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PREFACE

In January 1985, Dr. James A. Ionson, then Director of the Science and
Technology Directorate of SDIO, asked the research staff at IDA to investigate the
feasibility of developing a gamma-ray laser. The staff responded first by determining what
work had been done, who was currently working in the field, and what work should be
encouraged or supported. This was accomplished by convening a workshop for research
workers directly involved in gamma-ray laser work and others involved in ancillary fields
such as nuclear structure, radiation propagation in crystals, Moéssbauer Effect, and optical
lasers. The proceedings of the workshop are presented in IDA Report M-162 (Ref. 1).

Next, a study was undertaken to clarify critical issues concerning the various
pumping schemes proposed at the workshop as well as systems questions about the
gamma-ray laser as a working device. The work completed in 1985 is presented in IDA
Report P-2021 (Ref. 2).

The de'velopment of a y-ray laser is viewed as a high-risk/high-payoff undertaking.
IDA's involvement focuses on minimizing that risk and on striving to redirect the effort
when proposed schemes are shown not to be feasible.

Most recently, work has focused on extending the data base, on exploring the
nature of superradiance in the gamma-ray laser context, and on undertaking a detailed
investigation of the upconversion pumping scheme. A study of nuclear systematics, an
investigation of electron-nuclear driven pumping, and a discussion of the uncertainty
principle lifetime measurement and its impact on the long lifetime concept round out the
effort and are discussed in this report.

This report does not have an overall introduction. Each of the seven chapters is an
independent study containing its own introduction.




ABSTRACT

This report summarizes the IDA research effort in FY 1986 in investigating the

feasibility of developing a y-ray laser.
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SUMMARY

This report represents the 1986 effort of the IDA staff in the field of gamma-ray
lasers. The work is part of a continuing task that supports the Innovative Science and
Technology Office (IST) of the Strategic Defense Initiative Organization (SDIO). The
development of a y-ray laser is viewed as a high-risk/high-payoff undertaking. IDA's
involvement focuses on minimizing that risk and on striving to redirect the effort when
proposed schemes are shown not to be possible. In laying out its work, the IDA staff
strives to complement and support the various efforts of the IST contractors who make up
the gamma-ray laser community. Thus, although the seven chapters of this report are all
independent studies, each supports either a proposed pumping scheme or the general
theoretical underpinning of the laser. Three chapters are concerned with aspects of the
Upconversion Schemes; one chapter each relates to the Electron-Nuclear Coupling Scheme
and the Long Lifetime Scheme; and two chapters focus on theoretical aspects of
superradiance which underlies all the proposed schemes.

Chapters I, IV, and V involve the Upconversion Schemes. In these schemes, a
nucleus in an isomeric state is excited to a nearby state by absorbing electromagnetic
energy. Deexcitation of the nearby state leads to the lasing transition. Chapters II and III
discuss various aspects of superradiance (or superfluorescence) phenomena; Chapter VI
deals with electron nuclear coupling and its effect on energy transfer; and Chapter VII,
lifetime measurement and the uncertainty principle.

Chapter I presents in tabular form the results of a thorough search for nuclear levels
in the Nuclear Data Sheets; these are for levels which could be suitable for a laser. The
search located 80 isomers in 75 nuclei with 130 levels within 50 keV of the isomer. The
data is presented in a form useful for researchers in the field. Work is in progress to
produce such information for other pumping schemes.

It is generally believed that if a gamma-ray laser is developed it will probably emit
in a superradiant mode instead of a stimulated emission mode. Thus, superradiance is of
prim. importance to all pumping concepts. In Chapters II and III various aspects of
superradiant emission are discussed from the standpoint of adapting the techniques of
atomic and molecular superradiance to nuclear systems. In Chapter II, Dicke superradiance
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is presented in terms of a group theoretical approach. Various simple models have been
devised in the framework of this approach. The use of Young tableaux techniques for
describing symmetry properties of the states of a Dicke superradiant system is discussed.

In Chapter III, the quantum mechanical Bonifacio-Lugiato (B-L) theory of
superradiance under various conditions is investigated, using numerical calculations. A
thorough analysis is provided of some of the assumptions of the theory and for the first
time the observation of real instabilities in the superradiance dynamics are pointed out and
the source of the instabilities identified. It was determined that for the investigation of
certain features of nuclear superradiance the B-L theory can be used to advantage. Effects
of coherent excitation, relaxation, and inhomogeneous and homogeneous broadening in
nuclear superradiance could be studied with the B-L theory. To take into account
incoherent excitation (inversion), competing transitions, and transport effects, all of which
are important to the y-ray laser feasibility study, other theories have to be considered.

Among the many pumping concepts introduced over the years, the upconversion by
photons of a nuclear level from an isomeric level to achieve inversion is the one most
vigorously pursued by researchers at present. The idea is to pump the isomeric level by a
short burst of electromagnetic radiation from a powerful optical laser or x-ray source to a
nearby short-lived level. The lifetime of the upper lasing level should be short enough to
provide a large cross section for the stimulated emission but not so short that it would
introduce pumping problems with large power requirements.

In Chapter IV the requirements imposed by nuclear properties on the realization of
those processes are discussed. First, we examine a proposed single-photon Raman
scattering experiment and compare requirements set by atomic and nuclear systems.
Second, we discuss multiphoton processes and examine the requirements for pumping out
isomeric levels and preparing an inverted population for lasing A number of specific
results were obtained in this investigation. We have derived the correct expressions for the
off-resonance cross sections and power requirements for single-photon excitations.
Previously used expressions have overestimated the cross sections and underestimated
power requirements by as much as six orders of magnitude.

A parametric study of multiphoton upconversion for both atomic and nuclear
systems underscores the difficulty of working with nuclear systems as compared to atomic
systems due to the ten orders of magnitude greater power requirements. Upconversion by
photons does not seem to be a good way to produce inversion.
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Chapter V considers a set of three nuclear levels and the electromagnetic transitions
that must take place among them to upconvert from isom -. . nearby state and to go from
the latter state to the lasing transition. The nuclear quantum numbers and the level spacings
are varied to optimize the lasing problem. It is shown that severe problems occur when
upconverting by using a photon beam because of the screening effect of the nucleus by the
atomic electrons. The use of the coulomb fields of proton and electron beams for excitation
of the isomer is also considered.

Chapter VI considers the possibility that the electronic cloud surrounding the
nucleus can actually be used to mediate the transfer of electromagnetic energy to that
nucleus. A semiclassical approach has been used to describe the interaction of one or more
valence nucleons and one or more valence atomic electrons with each other and with the
nuclear core. A Hamiltonian is set up for the probiem; it uses a Saxon-Woods potential to
describe the interaction of the valence nucleon with the nuclear core. The autocorrelation
function of the dipole moment is calculated and used to obtain the power spectrum for one
valence proton interacting with one inner electron. The results are encouraging and, it is
hoped, will lead to the use of more realistic nuclear potentials.

Chapter VII considers the uncertainty principle to determine whether there is an
inherent limitation in the measurement time required to determine the lifetime or width of an
isomer. The answer in the example used is no. The strength of the source is the relevant
limitation. The discussion is relevant to criticisms about attempts to get rid of
inhomogeneous broadening in the long lifetime scheme. The result is that there is no
reason to deny the validity of the scheme.
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I. SEARCH FOR NUCLEAR LEVELS FOR
GAMMA-RAY LASERS

A. INTRODUCTION

This chapter presents the results of the search for candidate nuclei for the
upconversion, level mixing, and electron-nuclear energy transfer lasing schemes discussed
in IDA Memorandum Report M-162 (Ref. 1). These lasing schemes are described in
Chapter I of that report (c.f. Fig. 1). In these schemes the nucleus in an isomeric state is
“pumped" to a close-lying level of higher energy from which the lasing radiation is emitted.

B. SCOPE
This compilation includes isomers which have:
1. A half-life (isomeric state) =2 1 min.,
2. A known level within 50 keV above the isomeric state (i.e., E(IS) < E (level)

<E (S + 50), and
3. For which there exists at least one gamma-ray deexciting this level with energy
<300 keV.
C. SOURCES

References 4 through 7 were used as sources for the compilation presented in
Table 1.

D. EXPLANATION OF TABLE

Table 1 lists 80 isomers in 75 nuclei with 130 levels within the 50 keV range of the
isomeric state. The basic source of information is the latest edition of "Nuclear Data
Sheets," and the policies and conventions of that document are followed throughout.

For clarity, the properties for the isomer, for upconversion and for the upper level
are not repeated if the data refers to the same level as in the preceding line. Thus, for the
41.5 m isomer of 7435Br there are two levels known within the 50 keV limit. One, 18 keV




above the isomer (at 212.9 keV) is deexcited by four gamma-transitions, and the other,
44 keV above the isomer (at 239.3 keV) is deexcited by five gammas.

For uncertainties and powers of tens, the following shorthand is used in the table:
*  Uncertainty: 28.30 £ 0.15 is given as 28.30 15
«  Power of ten: 9.2 x 1073 is given as 9.2 E-3

Also, because the personal computer used to prepare the table lacked the Greek
alphabet, the customary & — pi and | appears as u.

The information in the table is listed in 5 groups referring to: 1. The Isomer,
2. The Pumping Radiation, 3. The Potential Lasing Radiation, and 4. The Upper Level--the
level reached by the upconversion which is the potential lasing level, and 5. The Lower
Level of the lasing radiation.

1. The Isomer: A, Z, T1/2 define the nucleus and the isomeric state.

If two isomers are listed for one nucleus, these are indicated by
superscripts: 1245;Sb! and 124;Sb2.

2. Upconversion:

E(keV) Energy required to excite the nucleus to this potential lasing level from the
isomeric state. Calculated from measured level energies.

Lpi Angular momentum and parity change needed in this upconversion.
Deduced from level properties.

3. Deexciting Transitions: All gamma-transitions deexciting this potential lasing
level are listed.

E(keV) Energy of the transition. If the gamma-ray (photon) has not been
observed, but the transition has been deduced from intensity balance in the
level scheme, or from observed conversion electrons, this is indicated in a
footnote.

IT(%) Transition intensity (Igamma + I1.C.) in percent of total level decay. In all
levels listed in this compilation, gamma-transitions (photons + conversion
electrons) are the only competing methods of decay. Thus, all IT(%) for a
single level (upconversion), should add up to 100 percent. This intensity
is generally derived from experimentally measured relative intensities and
conversion coefficients. If the multipolarity of the transition or the relative




Mult.

ICC

Iph(%)

intensities are uncertain, the absolute intensity is given in parentheses. No
uncertainties are given for these quantities.

Multipolarity of the deexciting transition. If the multipolarity has not been
uniquely determined, but has been deduced from the level scheme, it is
given in parentheses.

Total internal conversion coefficient of the transition for the multipolarity
indicated. In general, it is the adopted value given in "Nuclear Data
Sheets," either theoretical or experimental (the experimental values are
shown here with an experimental uncertainty). If the "Nuclear Data
Sheets" do not give an adopted conversion coefficient for the transition,
then the theoretical value from the current Nuclear Data Group (NDG)
program for theoretical conversion coefficients has been given. If the
transition is shown as a mixture of multipolarities, i.e., M1 + E2, then the
conversion coefficient for the predominant multipolarity is given and is
indicated by a subscript (e.g., 2.15m1).

Photon intensity in percent of level decay. If the absolute value of the
intensity cannot be derived because of lack of information, the
experimental relative intensities of the deexciting transition are given and
are so indicated with a footnote.

4. Upper Level: The level reached by upconversion.

5. Lower Level: The state in which the nucleus is left after emitting the lasing

E(keV)
Jri

T2

transition.
Energy of the level.

Spin and parity of the level. The parentheses here indicate weak
arguments in the spin assignment as outlined in the "Nuclear Data
Sheets."

Half-life of the level.
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II. SYMMETRY APPROACH TO ENHANCED
SPONTANEOUS DECAY OF NUCLEI

A. INTRODUCTION

The requirements for nuclear superradiance have now been discussed by Baldwin
and Feld (Ref. 8). The requirements are based on the approach of coupled Maxwell-
Schrodinger equations in a semiclassical model developed by Feld (Ref. 9) and references
therein.

Concurrent with the developments by Baldwin and Feld, we have considered the
question of what all of this means for a gamma-ray laser. The questions of actual candidate
nuclei have, in part, been answered; the data for many "useful” levels is missing for states
in the vicinity of long-lived isomers (Re186, Am242 and Hol62 for example); yet, still no
known scheme allows for the successful production of a lasing transition from a long-lived
state. Nonetheless, Rel86 looks quite interesting, as does Am242, for the possible
production of isotropic x-ray energy sources in plasmas. The possibility of lasing by
excitation from a ground state of a nucleus is certainly an interesting one; for this reason we
will consider some aspects of the theory of superradiance.

The theory of superradiance is not necessarily well known to nuclear chemists and
nuclear physicists, but the underlying symmetry as first presented by Dicke (Ref. 10)
generally is. Consequently, we set out to see if a simple treatment of the effect could be
summarized using the group theoretical approach.

In proceeding, we note that there are still some differences between the original
approach of Dicke and the semiclassical approach. These distinctions, outlined in Ref. 11,
are (1) the effect arises from an assumed symmetry, (2) other than photon bosonic fields
can be considered (Ref. 12), and (3) other than totally symmetric states (i.€., subradiant
states) can enter [as recently seen in single-photon experiments (Ref. 13)].

Here we address item 1 in sufficient detail to show that the conditions for
"superradiance” in the group-theoretical approach are in general agreement with those
derived in the semiclassical approach. Specific problems in the gamma-ray regime are then
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addressed. We are also ultimately interested in more than two-level systems. The
symmetry approach can be extended to N-level systems through the extension of the SU(2)
Dicke symmetry to SU(N) and treating the many two-level systems as SU(2) subgroups
(which now, in general, do not commute with each other.) The dynamics is certainly
expected to be rich and important for nuclear problems since many-level schemes are more
complicated than simple, two-level systems.

Item 2 refers to the coherent pion emission problem, discussed in Ref. 11. Since
the extension of Dicke's approach to such problems has thus far been straightforward, no
further allusions to the "pion laser”" are made here.

Item 3, the mixed symmetry states, may play a physical role. They all have reduced
radiation rates and must be considered in treatments of off-axis emission or dephasing.

A brief summary of group theory jargon is included in Appendix A, and textbook
descriptions of Dicke's model and the semiclassical approach are presented in Appendices
B and C.

Finally, we emphasize the symmetry aspects of Dicke's theory. We refer to the
results of his theory as "enhanced spontaneous decay" to avoid the experimental
observations called "superradiance” or "superfluorescence”. Dicke's theory must still be
applied to particular models. For example, one can add to Dicke's theory stimulated
emission or absorption terms to take account of the radiating material being in some electric
field (e.g., self-generated). This can alter the pulse characteristics and lead, for example, to
ringing effects. These approaches (for example, mean field theories, Ref. 14) are still not
necessarily the causes of observed ringing. Ultimately, the semiclassical approach has best
treated the propagation effects; and most-particularly, the transverse field effect accounts
for the observed ringing in the two-level Cs system (Ref. 15). Thus, as far as
nomenclature is concerned, we use Dicke's original term of "enhanced spontaneous decay"
for the physical essence of the problem, "stimulation terms" for the effects of including
photon occupancy number in simple extensions of Dicke's approach (in one-dimensional
models), "superradiance” and "superfluorescence"” for the actual effects which include more
detailed three-dimensional propagation, as originally intended.

Since, the photon absorption cross sections by nuclei in the gamma-ray regime are
so small, due to the short wavelength, the linear (whisker) geometry naturally arises, as
discussed in the final sections of the text. The linear geometry is also historically preferred,
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since practical problems, such as limiting heating effects in pumping, may also be lessened
in a linear geometry.

B. GROUP APPROACH TO DICKE SUPERRADIANCE

1. Objectives

In Ref. 10, R.H. Dicke presents an extensive study of enhanced spontaneous decay
(some states of which he calls "superradiant”). The basic premise in the work is that all
emitters (in the actual paper he treats molecules) interact with a common radiation field and
hence cannot be treated as independent entities. The key mathematical aspects of the theory
proposed by Dicke are summarized in Appendix B. The model can be used to simulate
some actual conditions to gain insight into "superradiant” models.

The advantages in constructing a simple model to examine aspects of all of the
possible states of the system as original'y described by Dicke are summarized below:

1. It is useful to program Dicke's model and simulate the superradiant pulse
formation by observing decay from highest energy ("weight") states. This is
done to gain an understanding of the relationship of the group versus
semiclassical approaches.

2. Itis useful to simulate pumping of the low-energy states to higher energy states
from some initial distribution and calculate the follow-on emitted pulse to
understand effects of incomplete inversion.

3. [Itis useful to derive analytical expressions in Dicke's approach to compare to
analytical formulae, where known.

4. The theory is inherently based on the symmetries PN (permutation group of N
objects) and U(2) (internal dynamical symmetry of the quantum mechanical
two-level system). Successive symmetry labels or "quantum numbers" are T
from PNy and r from SU(2) (these are described in Appendix A). By
introducing operators affecting At and Ar transitions, one can introduce
"dephasing" or loss terms into the previous exercises (Nos. 1, 2, and 3), and
reexplore the superradiant pulse formation process.

Of the items discussed in the original part of the proposal, items 1 and 3 are
examined. Items 2 and 4 are qualitatively discussed.
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2. Summary of the Theory and Aspects of Mixed-Symmetry States

Consider an atom, A, having two internal states--excited and unexcited--denoted by
an index k (k = o or B, respectively). Then all states of N-such atoms; completely and
simultaneously classified according to the permutation group PN of atoms with indices i
and the unitary group U(2) of internal states are denoted |t r m>. This nomenclature is
discussed in greater detail in Appendix A. Here, T is a Young tableau label of PN while r
and m are U(2) group eigenvalues. Physically, T is descriptive of the relative phasings
between the individual wave functions of cooperating emitters, r is descriptive of the
number of cooperating emitters, and m is a measure of the population inversion. The U(2)
group operators are Ry, R_, Ry, and N. Hence r(r+1) is the eigenvalue of R2 and m is the
eigenvalue of Ro. The square of the matrix element, M(r,m), is proportional to the
transition rates between states of the system and is also significant:

M(r,m) = [(r+m)(r-m+1)] = |<Tr m-1 R.lr m>|2. €))

Then the lattice diagram (weight diagram) Fig. 1 is set up (illustrated for the case of three
emitters, see Appendix A for details on nomenclature):

The matrix element M(r,m) of the shifting generator does not allow for transitions
between the multiplets (depicted as columns) in Fig. 1. Physically, the matrix element is
proportional to the interaction with the electromagnetic field. Thus, T and r remain good
quantum numbers as long as the permutation symmetries and SU(2) symmetries are
unbroken. Only transitions depicted in Fig. 2 occur. Assume a spontaneous decay rate for
the transition of Ao, then A(r,m) = Ao(r,m)M(r,m), where A(r,m) is the spontaneous decay
rate which is now dependent on r and m. We can calculate the rates as illustrated in Fig. 2,
assuming for convenience that Aq = 1:

Figure 2 illustrates the totally symmetric irreducible representation (irrep) has
enhanced decays of 3X, 4X, and 3X faster than the other two two-level multiplets. For
small N this simple model is easy to program, and this is done in the next section. First,
though, it is clear even beforehand that the totally symmetric irrep is, from an engineering
standpoint, most favorable to laser developers. Note also that even N systems have a non-
decaying multiplet; all odd N systems decay, regardless of multiplet.
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T 112]3 112 113 1
3 2 2
3
r=3/2 r=1/2 r=1/2 No mulitiplet
allowed in
m = +3/2 — SU2)
m=-1/2 —_——
m=-3/2 ——

Figure 1. The eight states of the three-particle system illustrate the
classitication of states according to the permutation group tableaux,
the cooperation number (r), and the inversion (m). The symmetric
multiplet is associated with Dicke superradiance. Mixed symmetry
states would have subradiant or reduced decay rates
corresponding to a Bloch vector of diminished length.

r=3/2 r=1/2 r=1/2
m = +3/2
L 3X
m=+1/2 — —
L ax L X ‘ X
m=-1/2 — —
[ o
m = -3/2

Figure 2. Decay rates for the multiplets illustrated in Fig. 1 according to
Dicke's theory. The rates are listed as multiples of the spontaneous
decay rate (e.g., 3X means three-times faster, etc.)
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Later, we examine the pulse characteristics of the totally symmetric multiplet in
greater detail, using simple differential equations. These equations apply for cases having
larger numbers of cooperating emitters, where it is inconvenient to exploit the almost
continuous behavior of m. For large N systems we can substitute m = r cos 8 where 8 is
the angle between a vector of length /r(r+1) and a z-component of length m. Then:

M(r,m) =|r.r|-m(m-1)
=r125in20 +rcos® +r
=r2sin20 . 2

Here | r.r | refers to the length of the vector which, of course, is r(r+1) in the quantum
case. For large r, the quadratic term overrides the linear term; but for small 6 the linear
term characteristic cf the quantum approach (as well as the non-zero value for the angle)
insures that the pulse is initiated.

The intensity of emitted light (I):
I=M(r,m) I, 3)
is equal to the rate of energy loss. (Here E is the energy spacing E; — Ep):
—d(mE)/dt = M(r,m) L,
" —d(r Ecos)/dt = M(r,m) I,
—(dr/dt) Ecos® + Er sinf d6/dt = r2sin26 I, . 4)

At this point we can assume that without symmetry breaking effects, r always
remains a good quantum number, and dr/dt = 0. We then get:

de/dt = (r I/E) sin® . &)

By solving this equation, the basic characteristics of the pulse emitted from decay of the
highest weight state of the totally symmetric irrep are easily determined. (In general, a
model could start from a distributed set of initial states and pump up and relax. The
problem is then only slightly more complicated, but easily examined for small N and
perhaps analytic expressions exist for large N.)

Further details of enhanced spontaneous decay are discussed in later sections. Now
it is convenient to discuss the mechanisms by which non-ideal effects can be treated in the
Dicke picture. Detrimental effects can arise by considering transitions which change r,
transitions which change the tableaux symmetry, or the presence of other levels which
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change all quantum numbers. In general, the system may start from a distributed ground
state and be pumped up as illustrated in Fig. 3. This further complicates the pulse
formation process since cross-multiplet transitions occur both in pumping and decay.

r=3/72 r=1/2 r=1/2
m = +3/2 —_—
m = +1/2 _T__:}___q_p__
m=-1/2 _T_X_T_ 4_>__T_
m=-3/2 _T_./

Figure 3. Detrimental etfects in pumping. Realistic effects, as discussed in the
text, can mix r-multiplets (ruining the ideal symmetry) and thus allow some
transitions beiween muitiplets. Some of those transitions are illustrated

here where the system is being pumped up. The same intra-band
transitions also occur in deexcitation.

Qualitatively, effects which alter the simple model based on the totally symmetric
irrep in simple physically meaningful ways are as follows:
1. Restriction of the emission to a single specific direction, k. Then, for emission
in direction k' different from k, the states of r are not good states of r'. Aftera
single emission in direction k other than k', in the ladder, Ar = 1, O since

some state of r is a mixture of states of r'. In reality, many ladders can be
mixed and the more successful are probably the longest ones.

2. Deviations from the characteristics of pure two-level systems. Decay of state
"a" or state "b" to some state "c" leads to competing superradiant multiplets and
at the minimum, Ar processes. This is because, even in Dicke's approach,
non-commuting SU(2) subgroups of SU(N) enter.

3. Dephasing. This appears as a At process between multiplets of degenerate T,
assuming "special” phasings are associated with states of the mixed symmetry
irreps (irreducible representations).

4. Photon losses. Here, Am processes not contributing to the photons in the
pulse must be included to account for photon absorption in the medium.
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Lacking explicit treatment of these previous four realities, even in Dicke's picture,
we examine the characteristics of pulses from the totally symmetric irrep in the following
sections. The three-level system, approachable by using the algebra of the three SU(2)
subgroups of SU(3) is addressable using the background information summarized in
Appendix A. With these problems aside, the totally symmetric irrep is expected to give the
most optimistic results.

C. DICKE SUPERRADIANCE FOR THE CASE OF THE TOTALLY
SYMMETRIC MULTIPLET--STATISTICAL MODELS

1. Characteristics of Pulses

The totally symmetric multiplet in the Dicke model is the unique multiplet labelled
by the cooperation number r = N/2 where N is the number of two-level atoms participating.
This multiplet has the largest r for a given N. Other multiplets have N participating atoms
but a cooperation number less than N/2. Thus, cooperation number and total participating
numbers are distinguished for other than totally symmetric multiplets.

The lattice or weight diagram for the totally symmetric irreducible representation
labelled by r = N/2 has 2r + 1 steps labelled by m. As previously noted, the decay rate for
each step on the lattice diagram is given by A = A (r + m)(r — m + 1) where m is the lattice
step occupied previously in time and Ao will hence be set equal to one second (here we use
A to denote rates and the distinction from the wavelength is evident in context; these rates
are equivalent to the widths used in the previous section). Assuming that a photon from
each spontaneous decay appears at intervals 1/A, the number of photons in some time
interval At can be counted, so that is what we first do. Here At is a suitable fractional
multiple of the time duration of the complete pulse. For the moment, we assume that none
of the photons created in the decay interact with the atoms to produce stimulated emission
or absorption effects. Consequently, we are strictly treating Dicke superradiance or "pure
superfluorescence”. Typical pulses in this approach are depicted in Fig. 4.

Alternatively, the statistical nature of the spontaneous decay rate can be incorporated
by introducing a normalized distribution function p(A,t) for each A; recalling A = A(m):
pIM)] = A(m)e~A(m)t. The resulting pulse is then an ensemble average of many pulses,
each with counts collected in a set of common time bins. Results for a typical single
statistical pulse and an average of many pulses is detailed in Fig. 4 for comparison with the
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Figure 4. Three statistical pulses and one most probable pulse are based
on a computer simulation for a small value of r.

previous result. Here, the cooperation number is unchanged, and the agreement with the
"most probable” pulse shape is clear. By "most probable” pulse we are referring
specifically to the case where the successive time sequences At(m) for photon appearance
from state m is given by 1/A(m).

As the r quantum number increases, the pulse duration decreases, as indicated in
Table 2.

Table 2. Cooperation Number and Pulse Duration

r Pulse Duration (ms)
1 1000
2 830
4 600
8 400
16 250
32 150
64 84
128 47
256 27
512 15
1024 8.0
2048 4.3
4096 2.3
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The pulse associated with r = 8192 is depicted in Fig. 5, and the strong r dependence of the
pulse duration is depicted in Fig. 6. For the "8192" pulse we observe a symmetric
distribution with delay times comparable to pulse width. The complete pulse duration is
1.3 ms.

4000

Photon counts

;

0 2 4 8 8 10 12

Time (0.00125 s per bin in 10 bins)

Figure 5. A typical pulse shape for r = 8192,

w

n
L

|

-Log (pulse duration in seconds)

.

o

— v T —— T .

) L]
] 1000 2000 3000 4000 5000
Cooperation number (r)

Figure 6. Pulse duration as function of r from the statistical simulations,
assuming a spontaneous lifetime of 1 s.
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The 1/r dependence of the pulse duration is seen in Figs. 7 and 8. As more easily
seen in the second of the two figures, the 1/N dependence is seen as an approach towards a
constant slope near the origin. Strong deviations in the points forr = 1 and r = 2 (and
smaller r in general) are observed due to the quantum effects which arise when the
r-dependent terms in the spontaneous decay rate are comparable to the r2 terms.

Pulse duration (s)
e
8
'l

0.2 L v LB 4 v L I T v
3.000 0.200 0.400 0.600 0.800 1.000 1.200
1/r (Inverse number)

Figure 7. The 1/r dependence of the pulse duration (assuming a spontaneous
lifetime of 1 s) shows the crude 1/N dependence inherent in superradiance.

0.33

Pulse duration (s)

o-m v L v ¥ T
2.00 0.02 0.04 0.06 0.08
1/r (Inverse number)

Figure 8. A blowup of the high r region on Fig. 7 depicting the near-linear
behavior for larger values of the cooperation number.

27

o 1



2. Expressions for the Pulse Duration Time

A convenient empirical relation for the pulse duration time is At = 3.2 (1/1)
(specifically, for a fit to a + b/r; a = 0.017 and b = 3.2). This is based on fits to the
previous curves.

For larger r it is much more convenient to exploit the almost continuous behavior of
m. In the simplest approach, where terms linear in r are dropped and the substitution m = r
cos 0 is made: d6/dt = (rAo/E) sinB, dr/dt = 0, r >> 1 (see previous section). The photon
emission rate is simply d6/dt = rsin 6. The pulse duration (Atg) associated with the time to
evolve from 01 to 6 is:

02

I sin~10 dO = In [tan(62/2)/tan(01/2)] = r AoAtg = a() . ©6)
01

Now we note that for 0 = O a singularity is obtained corresponding to an infinite pulse
width. This corresponds in the classical limit to an untipped Bloch vector in a metastable
state--vertical and just waiting to fall. Once again, this is because we have neglected the
linear term in r as well as the finite but non-zero value for the initial angle. The additional
quantum term (sometimes referred to as the noise term) is sufficient to insure 61 is not
zero. This naturally arises in Dicke's theory. Specifically, 81 = cos-1 U/t +2) = (2/N)12,

We can test this expression using the characteristics of a typical statistical pulse.
Let us assume for the moment that the pulse is emitted, for the most part, between 8! = 20°
(/9 or bin 2) and 07 = 160° (87/9 or bin 8) as seen in the previously depicted "8192"
pulse. Then for this case a(0) = 3.5 (At = 3.5/r) is in agreement with the empirical fit.

We now consider a(8), which we refer to as an "angular scaling factor” in more
detail. For pulses between 0; and n—8; for various 81, we plot a(8). The dependence is
depicted in Fig. 9 for 81 near zero up to 01 near 0.5 . The dependence of a(0) is not
nearly as strong as the r dependence--graphically portraying the dominant 1/N characteristic
time scale of superradiance. :

For the moment we use a simple numerical fit for the pulse angle scale factor: a(0)
= 6.75 exp (1.7 m) where m = 0;/x, although the logarithm is more analytically correct.

Since the significant pulse width is expected around m > 0.4 we can estimate m such that
Atdelay = Atwidth. This occurs when exp (-=1.7 m) = 0.5 or m = 0.4; consistent with the
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Figure 9. Behavior of the scaling factor from the statistical simulations.

physically expected value. In summary, Atdelay = Atwidth = 3.4/r. For example, consider
the r = 8192 pulse previously depicted. The pulse width is roughly 0.5 ms, corresponding
tom =— 1/1.7 In (rAU6.75 ) = 0.3, suggesting significant pulse formation at an angle of
54°. The empirical delay time is: Atdelay = (6.2-3.9)/8192 = 0.28 ms. These delay and
pulse width time periods are depicted in Fig. 10, along with the associated Bloch angles.

54°
> \
aoh —
uise Deca
| Delay Formation y
6000 -
®
[=4
-
8  4000-
c
=}
[}
&
2000 -+
0 4—-?1-’4 [ ——— —
0 2 4 6 8 10 12

Time (0.00125 sec per bin in 10 bins)

Figure 10. Basic pulse characteristics and associated Bloch vector angles for
the statistically simulated r = 8192 pulse.
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3. Empirical Estimates for Practical Values of the Cooperation Number

We can quickly get order-of-magnitude values for r using the empirical relations.
For a pulse of time scale At = 3.4/rA, s, the complete light cone distance in two directions
is 6.8c/tTAg = 1, (1 = length). Assuming Dicke superradiance occurs on length scales
governed by c, the self-consistent value for maximum r solves:

(TA2) In*=2r , )

where n* is the maximum excited state atom density, A is the reduced photon wavelength,
Ao is the spontaneous decay rate for one emitter and the term in parentheses is the cross-
sectional area. This latter cross-sectional area multiplied by the cooperation length is
usually called the cooperation volume. Numerically:

r= A (3.4rcn*/Ag)V/2
=1 x 1075 (1/E) (n*/Ao)V/2 , ®)
where E is in MeV, Ay in s~1 and n* in no./cm3.

In the x-ray region, E = 0.040 MeV and n* < 1023 no./cm3 so r < 108 A,~1/2, For
short-lived states (1 s~1) r < 108. For long-lived states, e.g., Ao = 10~2s~1, r = 109. For
large r, a slight correction to this empirical result is obtained from well known analytical
results discussed in Section G. For the case A = 1 s~1; the cooperation time is 10~8 s and
the cooperation length is roughly on the order of 10 m (refined later). Here we note that the
atoms are, for the most part, in a perfectly straight line. If limited by sample size, r is
correspondingly smaller by the geometric size of the sample.

D. ENHANCED SPONTANEOUS DECAY IN THE PRESENCE OF
EXTERNAL OR SELF-CREATED RADIATION FIELDS

This section describes simple Dicke superradiator models calculated with the
programming assistance of John Neuberger. These should help in the understanding of the
features of Dicke superradiance. They include, for the most part, some aspects of many
previous ideas. The basic tenet of Dicke remains intact--"all emitters emitting to a common
electromagnetic field" form a collective state wave function with respect to the field. The
pulses herein depict various features of the models and the chosen parameters are typical of
those for y-lasers. This work is not complete--other multiplets remain. The equations are
well suited for the treatment of very large values of the cooperation number in contrast to
the smaller values for the cooperation number treated in the previous section.
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The following models are particularly useful in the regime of interest to the gamma-ray
researchers.

1. Background for Dicke Superradiator Models

Consider the state r m, p> (where p is the photon number occupancy) and the
Dicke operators are a+pR— and apR+. As shown in Fig. 11, the “enhanced spontaneous
decay" rate is given by (r2 + r — m2 + m) and the net p-dependent decay rate is given by
2pm. Physically, the p-dependent decay rate is equivalent to 2m systems, each having
spontaneous decay rates dependent on p.

— | M, p-1> Excitation:
* pr-m)y(r+m+1)
-_— |rm,p> Deexcitation:

P+1)r+m)(r-m+1)

| r m1,p+1> Net:(r %r - m? + m)+2pm

Figure 11. Net decay rate, including stimulated absorption and emission

2. The Simple Superradiance Limit
In this case:
dmv/dt = -Ag (t2 +1- m2 +m), 9)

where the p-field plays no role. This means that emitted photons leave the system without
interacting with the emitters in the system. Such photons are called n-field photons in an
arbitrary nomenclature simply to distinguish "cavity" photons from emitted photons. A
pulse calculated using this equation is depicted in Fig. 12 forr = 106 and Ay = 1 5.

3. Simple Superradiator in a Cavity
For a simple superradiator in a closed cavity:
dm/dt = -Ag (r2 + r — m2 + m + 2pm) dp/dt = —dm/dt . (10)

There is a simple expression for the maximum change of the Bloch vector angle. Since
p=N-m-r=2r-m~r=r-~mthen d0/dt = O implies cos® ~ —1/3 or 6 ~ 109° (closer
in practice to 103°). A pulse is depicted in Fig. 13 for r = 106 and in Fig. 14 the population
inversion is shown to hang up at about 110°. This provides a good check, at least on our
understanding of what should happen in this trivial model for this limiting case.
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Figure 12. A simple superradiant pulse for the case of r = 108 calculated using
the simple Dicke model. The pulse appears symmetrical, with the delay time
comparable to the inverse of r as expected from the previous sections.
Moreover, the area under the pulse is also comparable to r.
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Figure 13. The intensity of photon emission into an ideal closed box for the
case of r = 106 reveals characteristics similar to that of the previous figure,
except the pulse width is severely shortened. The Bloch vector has hung
up at about 110°, just past superradiant emission (see next figure),
since stimulated absorption is now overcoming the emission rate.
This simple limit provides a check on the trivial dynamical equations.
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Figure 14. In the ideal cavily, the population of excited states decays quite
rapidly, but then hangs up just past the m = 0 level. The m-component
corresponds to an approximate Bloch vector angle near 110°, which is easily
derived to be a rough constant angle, regardless of cooperation number.
This provides a limiting case of the more complicated simple models.

4. Simple Superradiance in Fields Which Emit--Markovian Model
In considering two loss mechanisms for p-phbtons we can consider the following
coupled equations:
—dm/dt = Ag (r+m) (r~m+1) + 2Agmp , (11)
where

dn/dt = cp/L and dn/dt + dp/dt + dm/dt =0 . (12)

The basic features of these equations are summarized :

1. Stimulated emission and absorption are included in Dicke-superradiance via the
p-field number occupancy

2. The p-photon field appears adiabatically following the instantaneous evolution
of dm/dt (the emission process) and p-photons are lost at constant rate c/L

3. This set of equations cannot lead to geometric ringing unless p is fed from
some external source.
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There are two limiting cases worth noting:

1. In the case of an infinite length L, k = ¢/L = 0, dn/dt = O and the lossless
radiator in a cavity appears.

2. For ¢/L large dn/dt follows dm/dt and p — O, thus giving the coherently
spontaneously decaying "simple" Dicke superradiator .

Typical pulses are depicted in Figs. 15(a) through 15(f). The figures portray pulses from
samples of increasing length. Parameters are listed in Table 3. The parameters for pulses a
through e are repeated in the next subsection for the case of a Markovian radiator. We find
that as k decreases and Ag increases the trend is towards exponential decay, whereas for

decreasing k and increasing Ag, the trend is towards "pure" Dicke superradiance. For the
case of r = 1.5 x 106 and k = 1.0 x 105; dn/dt, n(t), m(t) and p(t) are shown in Figs. 16(a)
through 16(d).

In this approach, dm/dt follows he instantaneous p-field and not a p-field which is
averaged over previous magnitudes of dm/dt by some weighting factor. Thus, we must
consider a non-Markovian model which is the usual simple approach to dealing with this
problem.

S. Simple Superradiance in Fields which Emit--non-Markovian Model

In this case, the system decays at a rate dependent on the previdus (weighted)
history of the system, thus physically reflecting, or modeling, effects due to the finite speed
of light. We consider A(s) = Ag(r2 + r — m2 + m + 2pm) = A, p(s) where m = m(s) and
p = p(s) where s is some unit of time. Then, weighting of previous decay rates according
to past history is achieved by the same photon loss factor k = ¢/L in the factor ek(t-5) to get:

t
—dm/dt = 10k J'exp [ k(t-s)] p(s)ds . (13)
0

Still keeping the previous equations:

p+n+r+m=N;dp/dt+dn/dt + dm/dt = 0 and dn/dt = kp (14)
we examine superradiant pulses for the conditions studied in the previous section. Figures
17(a) through 17(e) depict various pulses for the parameters in Table 4. With increasing

sample length, more pronounced ringing occurs. For the case of r = 1.5 X 106 and
k = 1.0 x 106; dn/dt, n(t), m(t) and p(t) are depicted in Figs. 18(a) through 18(d).
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Figure 15. Views a through t depict pulses calculated according to a simple

Markovian radiator for the case r = 105 and varying values of the length and
spontaneous decay rates listed in Table 3. The sequence of puises from

a to e indicates a trend towards a long exponential-like decay roughly following
the ringing in the non-Markovian mode! of the next subsection. Pulse f is from
a radiator of length shorter than the radiator in a, thus depicting less of a tail

and closer behavior to the simple Dicke superradiator.,
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Table 3. Parameters for lllustrated Puises
Figure 15 k (x10-5) (s71) Ao (s71)
a 1 1
b 1.5 0.67
c 0.5 2
d 0.1 10
e 0.05 20
f 100 1
for a — e, the product kg is constant
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Figure 16. The (a) quantities dn/dt corresponding to the emitted intensity;
(b) n(t) corresponding to the running sum number of emitted photons;
(c) m(t) z-component of the cooperation number; and (d) p(t) the photons
in the "cavity” are depicted for the case of r = 1.5 x 105 and k = 1.0 x 106,

The example shows the rise and fall of p-tield intensity as the simple

radiator dumps its photons from m(t) to n(t).
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Figure 17. Views a through e depict pulses calculated according to a simple

non-Markovian radiator for the

case r = 105 and varying the length of the

radiator and spontaneous decay rates as was done in Figs. 15(a) through
15(e). For conditions where the p-tield plays an increasing role,
ringing is observed to increase in scope.
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Table 4. Parameters for lllustrated Pulses

Figure 17 k (x 1076) (s~1) Ao (s~1)
a 1 1
b 15 0.67
c 0.5 2
d 0.1 10
e 0.05 20

the product k Ag is constant
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Figure 18. The (a) quantities dn/dt corresponding to the emitted intensity;
(b) n(t) corresponding to the running sum of emitted photons;
(c) m(t) z-component of the cooperation number; and (d) p(t) the
photons in the "cavity” are depicted for the case of r=1.5x10° and

k=1.0x106.
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Five items are noted:

1.

For s restricted to t rather than the interval (0, t); the adiabatic limit (Markov) is
retained.

From the integral expression for ~dm/dt it is easy to show that the differential
equation has the following form:

d?m/dt2 + k dm/dt = = A9 k [r2 + r = m2 + m + 2mp(t)] . (15)

This equation is identical to the Markov form except for second derivatives and
factors of k, which allow for the ringing. This is the "pendulum" equation.

For times t >> k-1 (kt >> 1) then s near t contributes strongly;

t t
kj ds exp [—k(t-s)] p(s) ~ p(t)exp(—kt) k J.ds exp(ks)
0 0
~ p(H[1-exp(-kt)] (16)

for p(t) slowly varying. Then very large kt implies ~dm/dt = Agp(t) or:
dm/dt = — Ap (12 + r — m2 + m + 2mp) (17)

This is the previous equation for the case where d2m/dt2 plays no role." Since
d?m/dt2 leads to oscillations; this a "no ringing" limit, i.e., normal Dicke
superradiant emission.

For comparable k-! and t, significant "memory" is maintained, corresponding
physically to a situation where p-field photons have a significant effect for
some intervals of time.

Finally, we note that as d2m/dt2 goes to zero, k plays no role. Thus, the
second derivative term and the memory (k) go hand in hand, as we should
expect.

E. CONDITIONS FOR GAMMA-RAY ENHANCED DECAY RATES

The conditions for gamma-ray enhanced decay rates have been listed previously.

They can be understood using the properties of the totally symmetric multiplet in Dicke's
model. In fact Dicke points out many of the requirements, and they can be found in his
paper or as summarized in Appendix B.

The conditions are easily seen. In the limit of large r, that is, for a large number of

cooperating emitters, we first evaluate the pulse angle factor, a(0). In order to do that we
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need to estimate the initial angle and final angle. As noted previously, the initial angle is
precluded from having the value zero. We denote as Op that particular angle between a
vector of length of r(r+1) and a z-projection of m = r. In a simple approximation,
8p = (2/N)V2, as discussed previously. The pulse angle scale factor a(f) can now be
evaluated for 8 in the interval 6p to & — 6p:

a(8) = In [ tan (82/2) / tan (61/2) ]
tan (81/2) = 64/2 = 1/2 2/N)112
tan (8,/2) = 2/67 = 2 (2IN)~1/2 (18)
from which: |
a() = In[2N] (19)

Much of what is described here is easy to understand in terms of the simple model (model 1
in the previous section) the case of Dicke superradiance with no stimulated emission or
absorption.

1. Effective Gain

There is an "effective gain" for an emitted superradiant pulse. To see this we can
take equation (6) and substitute T =1/Ag and the cooperation time T =Atg to get the very

simple expression:
rte=1a(o) (20)
which now becomes:
Tc=(tN)2In[2N] . (21)
Then, t¢ << T, which for all practical purposes is the evidence for a superradiant pulse.
This implies that (1/N) 2 In [2N] is small or:
(Ute) =N2In(2N)}>>1 . 22)

Since we can introduce a cooperation number N¢ = n* A2 I and for L < I (which is
expected to be the case in the gamma-ray regime) N¢ = n*A2(2x)L. (For example we can
estimate 1o = 3.8 m, as detailed later, whereas the current manufactured or experimental
length would be much smaller). If we now associate OR, the resonant absorption cross
section, with ®A2, then:

(t/te) = (oeff L) /{2In (2N)] >> 1 (23)
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where oefr is the effective gain per unit length, provided we associate Cteff = ORn* L.

Clearly a gain in enhanced spontaneous decay is an awkward concept; if, on the other
hand, we try to think of a gain per unit length for an "equivalent laser", ¢, then:

exp(al) = (oeff L) / [2 1In (2N)]

o = (1/L) In [N/2 In (2N)] (length limited)
o = (1/tc) [r/a(8)] In [r/a(0)] (cooperation length limited)
(o) > In {N/{21n 2N)] } (24)

where, depending on how you care to approximate,
(aL)>In(N) . (25}

[It is interesting to note in comparison to Ref. 8 that the gain defined in equation (24) is
really a log of the ever-present log term In(2N), the latter log term effectively dropping out
to regive, for all practical purposes, the same log term.) Since N¢ is expected to be = 108

in the gamma-ray regime (plus or minus a number of decades, depending on the
spontaneous decay rate); oL is certainly greater than 10. We now examine the conditions
for y-ray enhanced spontaneous decay. (This is the equivalent (1/2) In N factor or "¢" of
other Ref. 8 working in the coupled Maxwell-Schrodinger approach.)]

2. Condition for Gamma-Ray Superradiance
From:
Tc = a(B)/AgNc (26)
where:
Tc = cooperation time
Ao = spontaneous decay rate
N¢ = cooperation number = 2r where r = Dicke multiplet,
and:
pleA2n=Nc=pctA2m , Q7

where:
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l¢ = ¢t = cooperation length
p = number density of emitters
A = radiation wavelength,
then:
N¢ = A [2pmca(@) / Ap]V2 . (28)
For p percentage of emitters participating, then a general equation for N is:
Nc=2x107/E (MeV) [p/Ag]¥2 . (29)

3. Size of a Gamma-Ray Superradiator

Let us use N¢ from above for the cooperation number and I; from above. Then,
crudely:

1c = 75000 E (in MeV) (pAg)~1/2 . (30)

for E = 10keV, A9 = 1 s ~1 and p = 0.25 the cooperation length I becomes about 380 cm--
consistent with a strictly straight line geometry. For shorter lifetimes the cooperation length
_is obviously less, for longer lifetimes the length is longer.

A quick summary of the characteristics of a superradiator in the gamma-ray regime
is made here. The characteristics are based on a superradiator comprised of one
cooperation length. The quantity E is the transition energy (in MeV), the quantity p is the
percent of emitters participating (taken as the percentage of complete maximum inversion
density, 5 x 1022 emitters/cm3) and A is the spontaneous decay rate (s~1). The angular
scale factor is assumed to be 25; it varies from 1 to 50.

Power (W) = 1.28 p/E independent of lifetime,
higher for lower E

Total Energy Out (J) = (3 x 10-6) (p/Ag)1/2 independent of E
higher for longer lifetime

Cooperation Length (cm) = 75000 E (pAg)~1/2 dependent on both E and lifetime
shorter for lower E
longer for longer lifetime
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Number of Emitters (no.) = (2 x 107/E) (p/Ag)¥2  dependent on both E and lifetime,
increases with lower E,
increases with longer lifetime.

Figure 19 presents the results.

F.  COMMENT ON COOPERATION, CAUSALITY AND VIOLATION OF
MICROSCOPIC CAUSALITY

Dicke says little about upper limits on the cooperation number as set by
macroscopic causality. One could argue that cooperativity is governed by the deBroglie
wavelength of the emitted boson. This would be a very bad situation for gamma-ray
lasers. Thus, it is assumed by most, as was done here, that the volume of cooperating
emitters is set by ¢t for some time T related to the lifetime of the emitter or collection of
emitters. There are suggestions that microscopic causality is violated* and this shows up in
the shapes of lines (particularly the Compton scattering terms). The time scale for this
violation is on the order of the time required by light to travel the "size" of the elementary
particle. This size is related to the spatial extent of the particle. That size, if estimated from
the width of the free particle Newton-Wigner wavefunction (a spatial wavefunction in the
Foldy-Wouthuysen representation for the position of a free mass), is roughly h/(2E) where
E is the total (relativistic energy). (Here we also assume the particle behaves in accord with
the Klein-Gordon equation, i.e., we do not consider here Dirac or Weyl particles.)

The quantity T arises quite naturally in the pre-acceleration problem, as well as in
the standard quantum limit for position measurements of massive particles. For the
massless photon it is = h/2p. For times roughly less than this, microscopic causality as
well as the standard quantum limit may be violated; but these are very, very small
distances. Consequently, we must assume that Dicke's effect are governed by macroscopic
causality, since limiting it to distance scales where quantum effects (spatial extent of
wavefunctions) play a role appears much too restrictive, given published experimental
results.

*  C.L. Bennett, private communication (results to be published in Phys. Rev. A.).
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G. CONCLUSIONS

Some distinctions remain with respect to the semiclassical electromagnetic field
approach to superradiance and the somewhat more general approach of Dicke. In
particular, the symmetric multiplet results agree with the semiclassical approach. More
specific aspects of the pulse (such as ringing) are determined on geometrical features of the
particular radiator. Although two types of ringing can appear (transverse effects or photon
field "memory" effects in stimulation terms) it is generally accepted that transverse effects
lead to observed ringing. Regardless, the conditions for gamma-ray superradiance remain,
and they are not easy conditions to achieve.
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III. EVALUATION AND COMPARISON OF
SUPERRADIANT MODELS

A. INTRODUCTION

It is generally expected that if a gamma-ray laser is developed it will probabiy emit
in a superradiant mode instead of a stimulated emission mode (Ref. 1). Trammell and
Hannon (Ref. 16) investigated the emission characteristic of inverted nuclear populations
and described two extreme types of possible emitted pulses (1) a pulse obtained from a
high gain nuclear amplifier due to stimulated emission (SE) of nuclear transition and
(2) a superradiant (SR) pulse emitted in a cooperative fashion by the inverted nuclear
population.” It has been pointed out on several occasions (Refs. 17, 18, and 19) that SE
and SR are closely related, they are, in fact, two distinct limiting cases of the same
phenomena. SR is the transient limit of cooperative emission and SE is the steady state
limit. Under appropriate conditions these two processes can interfere and produce a
ringing phenomena (a sequence of sharp pulses decéying in time). "Pure" superradiance,
on the other hand, produces a single pulse and a single-pass laser also produces a single
pulse.

Superradiance has been observed in atomic and molecular systems and the
phenomena have been explained theoretically (Ref. 20). An excellent discussion of the
experimental results is presented by Q.H.F. Vrehen and H.M. Gibbs (Ref. 21) and of the
present state of theoretical understanding by M. Gross and S. Haroche (Ref. 22) and
M.F.H. Schuurmans, Q.H.F. Vrehen and D. Polder (Ref. 23). A cooperative
phenomenon with nuclear transitions, but not superradiance or superfluorescence, has also
been observed through the shortening of the lifetime of a nuclear state (Ref. 24). Just as

Whereas most authors use superradiance to refer to all phenomena where radiation is emitted
cooperatively and the intensity is proportional to N2, where N is the number of atoms or nuclei in the
cooperative volume, Bonifacio and Lugiato (Ref. 17) distinguish between radiation emitted by
coherently prepared systems and with a macroscopic dipole moment initially, which they call
superradiant, and incoherently prepared systems which do not have a macroscopic dipole moment
initially but interact through normal fluorescent decay to evolve a macroscopic dipole which then
radiates coherently in a cooperative mode.
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the observation of resonance in nuclear systems requires special conditions which are more
stringent than in atomic systems, the realization of superradiance on the nuclear level must
overcome restrictions that are often not important in atomic and molecular systems. Some
special consideration has to be made to crystalline structure and its effect on SR, the
Mossbauer and Borrmann effects, attenuation of the beam due to inelastic scattering,
destruction of resonance due to inhomogeneous broadening, and relaxation effects.

Our purpose in these investigations was to determine the state of the theoretical
understanding of superradiance in general and to what extent the phenomena that are
expected to affect nuclear superradiance have been incorporated into the theory. In order to
develop a theoretical structure to study these effects, we worked in the framework of the
quantum mechanical Bonifacio-Lugiato (B-L) model (Refs. 17 and 25), which seemed
most appropriate because it was derived from general quantum, mechanical principles and
thus could accommodate nuclear conditions even though it was clearly restricted to a few
modes. This study checks the region of applicability of the (B-L) model, compares the
(B-L) model with the more restrictive but mathematically more tractable diffusion equations
of Narducci, et al. (Ref. 26), investigates the extent of quantum fluctuations under different
initial conditions and during the time development of the superradiant pulses. The simplest
superradiant models are based on the semiclassical pendulum équations. These were also
compared with the quantum mechanical calculations.

This chapter provides a thorough analysis of some of the assumptions of B-L
theory, shows real instabilities in the dynamics and identifies the source of the instabilities.
Besides the well-known weak points of the B-L theory such as the assumptions of few
modes and the independence of modes, the theory also does not easily allow for the
calculation of effects due to competing transitions (internal inversion, emission with recoil,
etc.) and transport effects (photoelectric absorption). Other theories have been developed
which are based on the Bloch-Maxwell equations and allow for the inclusion of quantum
initiation statistics and modeling of the fluctuation statistics. This is not of particular
importance or interest to the y-ray laser problem at the present state of sophistication and
development. What is of interest is that these theories can deal in a straightforward way
with the phenomena of competing transitions and photon transport in the medium; two
problems of great insignificance to the y-ray laser feasibility study. Further work should be
devoted to the exploitation of these theories in the y-ray laser problem.
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B. THE BONIFACIO-LUGIATO MODEL FOR SUPERRADIANCE

1. General Characteristics of the Model

The extensive literature on superradiance offers a fairly detailed physical
understanding of the phenomenon, which is due to the cooperative behavior of identical
atoms in a configuration satisfying certain well-defined conditions. However, it is not yet
clear whether any of the proposed mathematical models of superradiance is accurate enough
to give reliable quantitative predictions of effects in nuclear rather than atomic emission
levels.

The model that appears to be the most complete, with the fewest ad hoc
assumptions, is the one presented by R. Bonifacio and L.A. Lugiato in Ref. 17. It
includes (non-relativistic) quantum effects, line-broadening, and (non-Markovian*)
stimulation of the atomic system by the spontaneously emitted photons.

The only significant ad hoc assumption in the model appears to be its restriction of
the electromagnetic field to a pair of independent resonant modes. The authors justify this
assumption by limiting the geometrical configuration to a needle-shaped cavity which, if
thin enough, will support just two identical endfire waves propagating in opposite
directions. ' _

However, self-consistency is the only justification offered for treating the modes as
independent. Doing so has the advantage of reducing the analysis to considering just a
single mode for which the equivalent inverted atomic population is equal to N/2, where N
is the actual population, and the equivalent interaction coupling constant is equal to goﬁ ,

where g, is the actual resonant mode coupling constant.

On the other hand, before invoking the assumption that the two modes can be
treated separately, B-L show that their model implies two basic conservation laws. One
preserves the balance between emitted radiation and stored energy, and the other preserves
the Dicke cooperation eigenvalue defined in terms of the time-varying atomic dipole
polarization and population inversion states.

*  B-L use the term "Markovian" in reference to a system that has no memory of prior interactions. The

term implies that differential equations rather than differentio-integral equations, which the non-
Markovian case would require, govern the operator expectation values.
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The first equation has the form

d { 2 [<AT(a) A(o) > (t)] +<Ry> (t)}

a o= l‘o’ -k,

- 2K ) [<AT (@ A@ > )] 31)

where A(Ko) is the resonant mode of the internal field, kg, is the vector wave number at
resonance, R3 is the population inversion, and K (given by c/2L, where L is the axial
length of the active volume and c is the velocity of light) is the reciprocal maximum transit
time of photons in the active volume. The brackets < > refer, as usual, to the expectation
value of the operator that they enclose; and parentheses ( ), to a functional dependence on
the independent variable that they enclose. The second equation, in which R+ and R- are
collective dipole moment operators, has the form

%{ 2 [<R+(a)R_(a)>(t)]+<R§>(t)-<R3>(t)} =0 . (32)
o .

-k, -k

(] o

Any Hamiltonian system would imply the first law. The second is analogous to
and formally identical with the standard conservation of angular momentum (resulting in
this case from a collection of pure spin states) when the total angular momentum is
identified with the Dicke cooperation eigenvalue associated with a collective total angular
momentum (spin) operator R, and the angular momentum vector components are identified
with R3 and the real and imaginary parts of R+.

The conservation laws are therefore physically reasonable in their own right. In
fact, they appear to be quite general and could be regarded as essential requirements for any
model based on the collective behavior of identical two-state atoms.

From their general master equation, specialized to the case of identical,
independent, single-resonant modes, B-L also derive another equation involving the
expectation values of the atomic and electromagnetic field operators:
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<R;>(t <R;> (1) =

2 0
g { Z [<R*(@WR™(@) > () +2 < (A (@) A(@) R > } 33)

a=ks-K,
. . . * . . » .
where v is the volume of the active region and T, is a time constant due primarily to

inhomogenous line broadening. The unknown quantities appearing in equation (33) and
the two conservation laws (1) and (2) are the photon number expectation <A A>, the
atomic inversion expectation <R3>, the photon number/atomic inversion correlation
<A’ A R3>, and the fluctuations <R+ R->, <R32> of the atomic dipole/inversion vector
components.

Although equations (31), (32), and (33) derived from the B-L model do not form a
complete set of relations for all of the explicitly involved quantities that must be taken as
independent in a quantum mechanical treatment, in the semi-classical approximation they
reduce to a differential equation, similar to that derived from classical mechanics for the
motion of a pendulum, and a corresponding energy relation which, together, do form a
closed system:

t
2 7
Y A @aw>0=[bm]e
a'_'ko ’ -ko 0
L
T,
o0+ (xk+L) s0- &N T gnom -0 (34)
2
where ¢(t) is a modified Bloch angle defined by
<R3>(t) =[1 + Ncos ¢(1)}/2 . (35)

With these two relations, calculating the population inversion and the emitted
electromagnetic radiation, given by
2 ’1‘
=2 [ow] e
2¢3 (36)

as functions of time is comparatively simple.
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Thus, where the semi-classical approximation is valid, the B-L model gives a firm
footing to a numerically tractable differential equation, permitting straightforward
calculations of the most important quantities associated with superradiance. The equation
includes line-broadening and accounts fully for the effects of atomic stimulation by the local
field which is due to spontaneous emission by the initially excited atoms.

2. Comparison with the Feld-McGillivray Model

Because the semi-classical approximation offers a practical avenue for numerical
calculation, it leads to quantitative predictions that can be compared with experiment. For
this reason, as well as the fact that it appears to be valid in very general circumstances, it
has been the favored approach in such enterprises, in particular, those of M.S. Feld and
J.C. McGillivray.

By invoking the semi-classical approximation from the start, Feld and McGillivray
are able to include explicitly the spatial effects of a propagating electromagnetic field and
atomic polarization in their calculations. This mechanism leads to the prediction (Refs. 18
and 28), already observed experimentally, that ringing will occur in the emitted field under
appropriate conditions.

However, the B-L model, although it does not explicitly involve spatial
considerations, also predicts ringing by virtue of a mechanism that is ultimately due to the
propagation of photons in the polarized volume. In place of the spatial reference, the model
includes the parameter K defined by the propagation time of a photon moving across the
active volume. The value of K determines whether all emitted photons leave the volume, in
which case ringing does not occur, or whether some are absorbed, reexciting a portion of
the atoms that have dropped from the inverted to the ground state, in which case ringing

does occur.
Equivalently, a critical relation
Ktc >> 1 s

involving K and another quantity T, called the cooperation time, determines whether the
time-dependent interaction between the atoms and the local field is Markovian (large K1¢)
or non-Markovian in nature. In addition to cooperative spontaneous emission, which is the
sole effect in the Markovian case, the non-Markovian interaction causes the local field to
stimulate the atoms, thereby producing the observed ringing effect.
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In its basic form, the Feld-McGillivray model assumes a single-mode electro-
magnetic field. Since this is the only ad hoc assumption in the B-L model, with the semi-
classical approximation it should lead to the same results as the Feld-McGillivray model
when equivalent physical parameters in the two models have the same values.

References 18 and 28 claim that agreement with experiment depends on not
assuming a constant average photon propagation time but rather requires taking into
account the transverse distribution of the electromagnetic field. Nevertheless, the B-L
model of Ref. 25, which violates this precept, apparently does predict the gross
experimentally observed behavior of superradiant emissions. It is hard to believe that the
detailed spatial distribution of the transverse electromagnetic field could be known
accurately enough to distinguish between the abilities of the Ref. 25 and Ref. 27 models to
predict experimentally observed pulse shapes. '

On the other hand, the single pulse experiments of Gibbs et al.(Ref. 28), the more
recent two color experiments of Florian, et al.(Ref. 29) and the experiments studying the
transition region between superfluorescence - amplified spontaneous emission of Malcuit
et al.(Ref. 30) require "a more detailed theory" for this explanation., This is provided by
the Haake et al. model (Refs. 31, 32) which will be investigated in future work.

3. Validity of the Semi-Classical Approximation

Section C will present some numerical results obtained from the B-L. model with the
aid of approximations from Ref. 25 and 17 that, unlike the semiclassical, preserve first-
order quantum mechanical effects. Those results indicate the presence of large quantum
fluctuations during the time period when most of the radiant pulse energy is emitted. This
is somewhat disturbing because the validity of the semiclassical approximation over any
time interval appears to depend on quantum fluctuations being small enough to be neglected
during the interval.

In Ref. 33 Bonifacio et al. report a similar finding derived from an earlier
(Ref. 34), more primitive version of the B-L model: one that does not include stimulation
effects. Physically, the earlier model (which is Markovian and is a limiting form of the
more sophisticated version as the ratio of the cooperation time to the photon propagation
time becomes large) differs from that of Ref. 27 by virtue of the fact that the radiated
photons leave the active volume before they can interact with the atoms. As a result, they
follow the atomic state changes adiabatically and do not produce a ringing effect in the

emitted pulse.
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With the earlier model, the authors are able to show (Ref. 33) by direct calculation
that quantum fluctuations are large when initially the atomic system is totally inverted. But
when the active population is sufficiently large and initially less than totally inverted, their
calculations show that the fluctuations are small. They also demonstrate that, consistent
with this result, the semi-classical approach is valid whenever the initial atomic system is
less than totally inverted.

Although the results in Ref. 33 appear to validate the use of the semi-classical
approximation to predict spontaneous cooperative radiation whenever the initial state of
atomic inversion is not due to a ® pulse (which would be necessary for total inversion of
the atoms), the more sophisticated Ref. 25 model does not necessarily lead to the same
conclusion when non-Markovian effects are important. This puts the validity of the semi-
classical approach in doubt during the time period when most of the radiation takes place.

Unfortunately, the region of validity of the Ref. 25 approximations, which take into
account quantum mechanical effects, is, itself, uncertain, at least for the case in which the
process is non-Markovian. Thus, calculations based on those approximations cannot be
used directly to assess the accuracy of the semi-classical approach over the questionable
time period.

To take into account quantum fluctuations in the non-Markovian case, B-L. make
two approximations. One is the Born approximation which, without some additional step,
such as invoking the semiclassical, does not lead directly to a closed system of equations
for expectation values of photon and atomic operators.

In the Dicke state representation, the Born approximation leads at first to a finite
system of integro-differential equations for the occupation probabilities p(m,t) of the Dicke
state basis vectors |r,m>:

t
202 ~(t+s)/2T —K(t-s)
Eo jds e 2

p(mrt) = _V_

{g(m) p(m,s) - g(m+1) p(m+1,s) + [g(m) + g(m + 1)]N (m,s)
- g(m+1) N (m+1,5) - g(m+) N (m-1,5) + g1/2(m) gl/2(m-1) L (m,s)

- 2g12(m) g172 (m+1)L (m+1,s) + g¥/2 (m*1) g2 (m+2) L (m+2,5) } , 37)
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where

L AN o1 L
g(m):{(2 N+m)(2Nm+1) for TNSmSZN’
0 otherwise ,

N(m,t) is the photon number expectation for the inversion state m, and L(m,t) is the
expectation value of an operator derived from the interaction of the electromagnetic field
with the atomic dipole operators R*, R=. Unfortunately, the number of unknown
quantities to be determined from equation (37) is larger than the number of equations in the
system.

When the authors enlarge the system to include time derivatives of the unknowns
other than the Dicke state occupation probabilities, the resulting set of equations is still not
closed because it contains new unknowns, consisting of higher order moments of the
photon and atomic operators. Obviously, repeating the process indefinitely will result in an
infinite hierarchy of (finite) systems of equations, involving moments of ever increasing
order.

The authors observe that a simple way of getting a closed system is to drop the
photon expectation values and all second-order moments from the first set of equations in
this hierarchy, involving time derivatives of just the Dicke state occupation probabilities and
the photon number expectations. However, that procedure should be valid only under
conditions that would justify substituting the earlier Markovian model. It would therefore
add nothing new, serving only to verify that their earlier model is a limiting case of the
more general non-Markovian model.

Their next step is to retain the equations involving time derivatives of both the Dicke
state occupation probabilities and the photon expectation values, but to drop all second-
order and higher moments. The result is a larger, but closed, system:
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t

. 28% - K(t-s) —(t+s) 12T,
p(m,t) = - J‘ds e 2
o]

{g(m) p(m,s) — g(m+1) p(m+1,s) + [g(m) + g(m+1)IN (m,s)

- g(m+1)N (m+1,5) — g(m)N (m-1,s) } ,

t
. 2 -K (t-s) — (t+s) 12T,
N (m,t) = (—2KN (m,t) + f‘Z’J‘ds e ; 2)
[+

{g(m+1) [p(m+1,s) + N (m+1,s) ~ N (ms,)} } . (38)

Significantly, the equations resulting from this approximation imply a relationship
between atomic and photon operator expectation values that is also implied by the exact
(i.e., with no approximations) operator equations of the model. Therefore, the three
previously discussed equations, (31), (32), and (33), follow from (38). In addition, (38)
guarantees conservation of probability: the sum of the Dicke state occupation probabilities
satisfying (38) must remain constant over time.

Because the approximate equations yield the basic conservation laws, it might be
expected that their solutions would be physically well-behaved. However, numerical
calculations indicate otherwise.

After a certain time interval, before the emitted pulse reaches its maximum
amplitude, quantities derived from the approximate solution become non-physical in at least
two respects. First, although conservation of total probability is still satisfied, individual
Dicke state occupation probabilities become negative. Second, although conservation of
energy is still satisfied, individual Dicke state photon number expectation values also
become neg ative.

The case in which the number of atoms in the active volume is limited to two is
simple enough to be treated in detail analytically if inhomogeneous line-broadening is
neglected. An investigation of it using the Laplace transform reveals that all states below
the maximum Dicke occupation number (which is two in the case considered) exhibit a
resonance phenomenon; i.e., some of the transformed solution functions have double
poles. In the inverse transform domain such a function must have a factor proportional to

the time variable.
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In the absence of double poles, when parameters are such that ringing does not
occur, the solution functions decay exponentially with time. When the converse is true,
i.e., parameters are such that ringing does occur, the solution functions have factors that
are linear combinations of trignometric functions of time. At least in the second case, the
additional time variable factor imposed by a double pole guarantees increasingly larger
oscillations with linearly increasing amplitudes that mnst eventually produce negative
expectation values.

In principle, a similar analysis for an arbitrary number of atoms could be carried out
in the same way, using the Laplace transform, since the equations can be treated recursively
in pairs, no matter what the total number of atoms may be. Because of the symmetry of the
inversion operator eigenvalues about zero, the coefficients due to the lower Dicke states
will always produce double poles for the transformed solution functions, just as in the case
of two atoms.

In fact, in Ref. 33 the authors make the same observation in connection with the
earlier Markovian model, i.e., that due to this coefficient symmetry, double poles must
always occur in the transformed solution functions. However, in Ref. 33 the remark is
made in passing, without noting the consequence that, in approximate solutions for a more
general model, such resonances may lead to physically impossible negative expectation
values.

C. CALCULATED RESULTS

In the previous section we discussed some of the problems involved with the
various treatments of superradiance, emphasizing the B-L model. In this section we
describe the calculations performed to check some of these interesting points, in particular
(1) the relationship of quantum fluctuation to the pulse shape, (2) the justification of the
semiclassical approximation, and (3) the limitations of and differences between pulses
calculated by means of different approximations.

In all cases, the geometrical model assumed is of a long acicular shape, with the
diameter D << L, the length, as shown in Fig. 20.
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Figure 20. Geometry of the Superradiator Showing the Two Possible
Modes of Emission

The calculations are actually done for one of the possible emission modes, right
emission, as shown in Fig. 20. The nuclear model consists of an energy level structure as
depicted in Fig. 21, with the Dicke quantum states r,m> satisfying the eigenvalue

equations
R2|r,m>=r(r+1) |r,m>
R3|r,m>=m|r,m> ,
r=N :
me=rp EE——
‘ r = N-1
m=s=r-1 — : [ S
H r=1
mes=r-2 E—— E EE— ——
. ' . r=0
ms= : : : 000 wmmEE——— Es .
[ ] ] [ ]
m = -(r-2) co—— | cn———— ———
[ ]
1
m = «(r-1) see— : ——————
]
M= E—— E
:
1-18-87-3M

Figure 21. Dicke Superradiant Model Showing the Various
Multiplets of 2N two-level Resonators

where r is the cooperation number ranging from O or 1/2 to 1/2 N, and m is the energy
eigenvalue restricted to the range (-r, +r). The Bloch states which are fully symmetrized
states if the two-level nuclei are defined in the subspace of cooperation number r as
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m=-r

where 6 and ¢ define points in the spherical coordinate system with 8 = O corresponding to
the south pole as shown in Fig. 22.

BLOCH VECTOR

1-18-87-2M

Figure 22. The Bloch Sphere
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For convenient reference, the parameters useful in the description of superradiant
phenomena, together with their definitions, are listed in Table 5. The conditions for

superradiance are

K1t <T, .

A phenomena sometimes referred to as pure superradiance, which produces a single
pulse, is observed when

Kte>>1 .

This occurs because the photons escape so fast from the volume that they do not stimulate
emission. Multiple pulses are obtained when

Kt.=1 .

In this case, TR = T¢, the radiation field can interact with the atoms or nuclei and the
character of the resulting emitted pulse is due to both cooperative emission and stimulated
emission and absorption.

We first describe the superradiant pulse shape obtained from the diffusion equation
derived by Narducci et al., as mentioned earlier. The diffusion equation is derived from the
B-L theory in the limit K — oo and T; — oo so that there is no interaction of the

cooperation emission process and stimulated emission. We assumed the initial distribution
to be normal with variance 62 so that the probability of occupation of a Bloch state is given

by
2 2
P(@) =~ e-®-1)/c” . (40)

Our calculations were performed with a computer program SR1 described in Appendix E.
Figure 23 shows some calculated results of this superradiant pulse obtained from the
diffusion equation for N = 1 to 106, Note the change in the shape of the pulse as N
decreases. For N = 102 to 10, the pulse is well-developed and is characterized by a delay
time Tp and a pulse width TR, both proportional to N2, On the other hand, for low N and
in particular for N = 1 and o large, the pulse is exponential and does not exhibit cooperative
effects and, in fact, reflects independent single-particle emission.




Table 5. Table of Parameters Describing Superradiance

Parameter Definition Description Reference
1 1 2,12 i
Y T3 (cpYA) maximum superradiant rate A-C*
N (c/Ye) Ap maximum cooperation number A-C**
2
Y0 %Nc‘{c AA enhanced emission rate of N¢ resonators A-C
gk (ck p2/2m)172 coupling constant B-L
172
1 (¥ ion ti
1c 2 ( N) cooperation time B-L
8, .
1R 3 duration time of pure superradiance B-L
pA,L
) %txl,. N delay time, or reduced time during which B-L
pure superradiance reaches its maximum
2
cA, .
To lifetime of isolated resonator B-L
16x &
K L hoton escape rate B-
oL photon esese :
K1 -2%-% photon escape rate (in units of 1¢) B-L
1
k2 ‘_i:.‘ T inhomogeneous line broadening B-L
2
equivalent rate
T; inhomogeneous linewidth dephasing time B-L
LIST OF PRIMARY PARAMETERS
N = number of resonators (nuclei or atoms) in B = electric dipole moment
volume v ¢ = speed of light
p =density of resonators = Nfv Y = emission rate of isolated resonator
A = wavslength of emitted radiation A = cross section of window of length L
Ao =wavelength at resonance 1o = lifetime of isolated resonator
k = 2/ wavenumber v = volume occupied by radiators.

.

F.T. Arrecchi and E. Courtens, Phys. Rev. A, 2 (5), 1730, 1970.
R. Bonifacio and L.A. Lugiato, "Cooperative Radiation Processes in Two-Level Systems:
Superfluorescence II,” Phys. Rev. 12 (2), 587-598, August 1975.
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Figure 23. Characteristics of a pure superradiant pulse calculated from the
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To study superradiance in the more complex regime, where emission by
cooperative phenomena and stimulated emission interfere, we solved equations (8)
numerically. The program (SR 2, Appendix F) calculates the probability of the occupation
of the Bloch states P(m') and the electromagnetic field states N(m) or Q(m’) as a function
of time.* The calculation is done for arbitrary initial distributions P(m) and N(m) and
arbitrary K and T; . The cooperation number N is a constant of motion; thus the dynamics

are restricted to the first ladder of the Dicke states as shown in Fig. 21.

Figure 24 shows some characteristic pulses obtained with the Master's equation
treatment of Bonifacio and Lugiato in the region of k; > ko, k1 = ko and k; < k¢, where

ko=2 /2 and corresponds to the K value in units of ¢ at which ringing first occurs (see
Appendix E). Note the appearance of a single pulse in Fig. 24a, corresponding to the pure
superradiant region and ringing, or multiple pulses, when stimulated emission interferes
with superradiance, Figs. 24b and 24c.

The effect of the coupling constant g ' = 2 g, on the superradiant pulses is

L]

shown in Fig. 25 where go' is varied from 0.051 to 0.817, effectively changing the

cooperation time since

k@7

The master equation formalism allows one to investigate the interaction between the photon
field and the master system through equations (8). The results shown up to now assumed
that N(m) = O initially, thus the photon field was not activated. Figures 7a through 7f
show the superradiant emission when N(m) = O initially. Notice that as the initial value
N(m) increases the emission which is obtained from Y, N(m) starts at low values (Figs. 26a
and 26b) and reverses to full ringing pulses which start at high values initially. There is a
phase change in the ringing phenomena with the transition characterized by a decaying,
slightly wavy pulse (Figs. 26¢ and 26f).

* A note on notation. In this chapter we use p(m) and N(m) for Dicke state occupation probability and
the photon number expectation value when the basis system varies from m = —r to +r. When the basis
systemis m' = 1 to N + 1 we use P(m') and Q(m') for these quantities. Also, K = c/2L is used for ;he
photon escape rate in c.g.s. units but k| = K7 is used when it is given in terms of the cooperation

time.
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We have observed during our investigation of the B-L model that under some
conditions the calculated results would oscillate violently and even blow up. We suspected
that this could be caused by numerical error (a truncation made by B-L) as discussed in
Chapter II. In order to examine this problem, we solved equations (8), analytically for the
case N = 2 and showed that the negative probabilities and blow up were also obtained from
that solution. This is discussed in detail in Appendix D.

The numerical solution and the analytical solution gave identical results. Three
emission pulses calculated for N = 2 are shown in Fig. 27. For the initial conditions
P(1) = P(2) = 0, P(3) = 1 as shown in Fig. 27a and for P(1) = 0, P(2) = P(3) = 1|
as shown in Fig. 27b the probability goes negative, whereas for P(1) = P(3) = 0 and
P(2) = 1, a physically meaningful solution is obtained.

Quantum mechanical fluctuations are responsible for the triggering of the
superradiant pulse from the inverted population. It has been argued that when these
fluctuations are small, semiclassical solutions give good approximations to the superradiant
pulse emission and that these fluctuations are small at the maximum emission rate (Refs.
18, 34, and 35). The following sequence of figures was generated to check this
assumption. Figures 28a through 28d show in the top figures the emitted pulse which is
calculated from equations (8) and is given by

z N (m) . (42)

The lower figure gives the variance

2 2
<<R3>>=<R3>—<R3>

Z m? p(m) - < Z mp(m) >* . (43)
m m

Our results indicate that the quantum fluctuations are not necessarily negligible
during the course of the emission process. Figure 29 shows similar results for the initial
distribution P(5) = 1 and P(m) = 0, m = § and k; = 0.0269. Here the variance is zero
initially, goes positive for a good part of the first pulse and then oscillates around zero.
The unphysical oscillations are due to the truncation error discussed earlier. However,
during the major part of the first pulse in the ringing emission process the variance is
positive. In the pure superradiant region (Fig. 30) the variance is positive and not
negligible during the major part of the pulse.
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Pulse and variance for the initial conditions P(5) = 1,
P(m') = 0,m' =5, N = 100 and ky = 0.0269.
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P(m') = 0,m' = 5, N = 100 and kq = 2.69.

In our final discussion we compare the results of quantum mechanical calculations
using the B-L model with semiclassical calculations using the pendulum equations
(programs SR 3 and SR 4, Appendix G). Figures 31a and 32a show quantum mechanical
results, and Figs. 31 and 32 the corresponding semiclassical results. In both cases, the
same parameters were used, but in 32 the Dicke state was initially specified as m = 2. Such
a precise specification is not possible in the semiclassical treatment.
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D. CONCLUSIONS

The general equations of B-L describe the phenomena of superradiance in the
regime where stimulated emission interferes with cooperative emission as well as in the
pure superradiant regime. The theory has the capability of explaining certain features of the
experimental results with or without the occurrence of ringing. To explain correctly the
experimentally observed pulse fluctuations, quantum initiation statistics have to be included
correctly and this is done in other theories. Also, the truncation introduced by B-L to make
the equations tractable produces unphysical results for some initial conditions. This can
appear as negative variance, negative pulses, or complete blow up of the solution. This
problem has to be dealt with to make the theory more generally useful. It would be
important to do this because the general theory includes inhomogeneous broadening effects
which are important in nuclear considerations. Also, calculations with the B-L theory
showed that quantum fluctuations are large and important over the complete pulse when
stimulated emission is important. Thus, the usual justifications for the validity of
semiclassical theories breaks down.

In conclusion, we feel that for the study of certain features of nuclear superradiance
the B-L theory can be used to advantage, especially if the truncation error can be removed.
Effects of coherent excitation, relaxation, inhomogeneous and homogeneous broadening in
nuclear superradiance could be studied with the B-L theory. For taking into account
incoherent excitation, competing transitions, and transport effects, other theories based on
the Maxwell Bloch equations (Haake-Haus group effort and the Eindhoven group effort)
(Refs. 31, 32, and 36) should be considered.
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IV. MULTIPHOTON DEEXCITATION OF
ISOMERIC LEVELS

A. INTRODUCTION

Among the many concepts introduced over the years for developing a y-ray laser
(Refs. 1, 2, and 37) the upconversion or pumping of a nuclear level from an isomeric level
to achieve inversion is the one most vigorously pursued by researchers at present. The idea
is to pump the isomeric level by a short burst of electromagnetic radiation from a powerful
optical laser or x-ray source to a nearby short-lived level. This would provide the inverted
population if the decay rate of the upper lasing level is not too short. The lifetime of the
upper lasing level should be short enough to provide a large cross section for the stimulated
emission but not so short that it would introduce pumping problems with large power
requirements. In general, the upper lasing level may be populated through a cascade
process, thus reducing the requirements on the lifetime of the lasing level.

For the purpose of analysis, the operation of a y-ray laser can be conveniently
divided into three steps as discussed in Ref. 2. The first step is the initial pumping or
inversion stage, which involves the preparation of the isomer. The second step is the
triggering of the lasing action. In the case of interest, this is the pumping or the
upconversion to the upper lasing level by a low-energy photon. The third step is the
emission of the radiation in a lasing or superradiant mode. All three stages present their
special problems as discussed in Ref. 2. In particular, the emission stage requires the
operation of the Mdssbauer Effect (ME). This effect could be destroyed by heating or the
destruction of the isomeric crystal during the triggering stage by inefficient upconversion
mechanisms. In general, threshold conditions, depending on solid state and nuclear
properties, have to be satisfied (Refs. 38, 39, and 40).

In this paper, we are only concerned with the triggering stage in the upconversion
concepts as shown in Fig. 33. During this stage, the population of the upper level with
high fluxes of low-energy photons has to be accomplished.

The processes referred to as "coherent and incoherent upconversions” have been
discussed by Collins (Ref. 41). We are nterested in the requirements imposed by nuclear
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properties on the realization of those processes. Furthermore, one of the critical proofs of
concept experiments on the way to the development of a Y-ray laser, based on upconversion
techniques would be the demonstration that the encrgy stored in an isomeric level can be
"pumped out,” or the decay rate of the level increased. A Raman scattering experiment
(Ref. 42) has already been proposed to do just that. The feasibility of this would have to
be shown before lasing on the nuclear level with upconversion techniques (a much more
difficult problem) is seriously considered.

We have divided this Chapter into two parts. First, we examine the single-photon
Raman scattering experiment and compare requirements set by atomic and nuclear systems.
Second, we discuss multiphoton processes and examine the requirements for pumping out
isomeric levels and preparing an inverted population for lasing.

UPPER .
LASING >
e |+
4 ~ : 4
I .
OPTICAL Eca -+ B
. |
ISOMERIC ]
STORAGE [s> fo fig
LEVEL
Ey
Egp =10-100 keV
LOWER 1
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1-8-97-24

Figure 33. A three-state system showing the isomeric level, or initial state la>,
the upper lasing level lc> and the ground state |b>. In the subsequent
analysis we keep Ep, and y; constant and vary Eca, ©, N, |, and ye.
Process 1 in the figure shows a single photon off-resonance excitation,
process 2 a multiphoton on-resonance excitation, and
process 3 a muitiphoton off-resonanca excitation.
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B. COMPARISON OF ATOMIC AND NUCLEAR ELECTROMAGNETIC
TRANSITIONS

At this point, a brief discussion of general trends in atomic and nuclear transitions
would be appropriate. Particular optical lasing and potential gamma-ray lasing transitions
are best contrasted against such a background discussion. Features of atomic and nuclear
transitions are very different, with major differences arising both from kinematics and
structure. Three of the four aspects to be considered (multipolarity, frequency, lifetime,
and single-particle structure) involve primarily kinematics. A dimensionless figure of merit
with which to relate these features, and contrast the atomic with the nuclear case, is kr, the
photon wave number (k = 21/A) multiplied by the system radius.

Atomic transitions are almost exclusively electric dipole transitions with frequencies
in or near the visible range, and lifetimes longer than a nanosecond. They arise from single
electron level jumps. For a 1-eV transition A = 12,000 A, and kr is about 3 x 10-4. The
radiative decay width for electric decays is given by an atomic matrix element, multiplied by
(kr)21+1_ If the interaction potential is e2/r evaluated at an effective distance of about an
angstrom, this leads to a width of 5 x 10-10 eV, or a lifetime of about a microsecond (see
Table 6). Electric quadrupole radiation would be inhibited by an additional factor of (kr)2,
or about 10~7. Magnetic dipole radiation would be inhibited by a factor of (hc/mec? a,), or
about 5 x 10-3 (a, is the Bohr radius of the Hydrogen atom).

Table 6. Atomic and Nuclear Decay Rates

Nare of

Parameter Atomic Nuclear
E-Gamma (eV) 1 2 4 100,000 300,000 1,000,000
k-Gamma (1/A) 0.000507 | 0.001014 [0.002027 |50.67653 | 152.0296 | 506.7653
A(A) 12398.61 |6199.305 |3099.652 |0.123986 | 0.041329 | 0.012399
(kag) 0.000268 | 0.000536 (0.001072 | 0.002681 | 0.008042 | 0.026808
Width (eV) 5.25E-10| 4.2E-09 |3.36E-08{0.005246 { 0.141634 | 5.245713
E1 Rate ()" 797503.7 | 6380029 {51040234|7.89E+12 | 2.15E+14 | 7.98E+15
M1 Rate (s)~! 42.49773 | 009.9819 |2719.855 | 1.26E+10| 3.41E+10 | 1.26E+13
E2 Rate(s)™! 0.057314 {1.834036 | 58.68914 |57313614| 1.39E+10 | 5.73E+12
E2 Rate*Z*2(s)~! |0.057314 |1.834036 |58.68914 {1.43E+11| 3.48E+13 | 1.43E+16
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The dominance of electric dipole, or E1 radiation, and the approximate lifetime are
set by the available energy of an electronic transition together with the radius of an atom.
Electric quadrupole radiation is much weaker because (kr) is so small. Since major shells
in atoms contain a series of adjacent 1-values, many electric dipole transitions exist.

For a nuclear transition, with a characteristic energy of 1 MeV and a characteristic
radius of 5.29 fm (= 10~4 a,), we have (kr) two orders of magnitude larger than in the
atomic case. Using the same, somewhat naive, procedure to estimate a nuclear E1 lifetime
gives a width of 5 eV, or a lifetime of about 10~16 s, Electric quadrupole radiation would
be only three orders of magnitude slower, and have lifetimes muckh shorter than those of the
fastest atomic electric dipole transitions. From energy and size considerations alone we
expect that nuclear transitions will be faster than atomic, and will have higher
multipolarities which are more competitive with dipole radiation. (See Table 6.) It is
important to recall that candidate gamma-ray lasing transitions must compete with all
available channels. The 10 to 100 keV energy range for the lasing transition does not set
the energy scale if other decays with higher energy gamma rays are allowed, as is the case
for most candidates. The lower energy desired for the lasing transition only imposes
further kinematic difficulties.

Further differences arise from the dissimilarities in structure of atoms and nuclei.
In atoms, charge separation involves moving a light electron relative to the center of mass
of the atom and is fairly simple. In nuclei, charge separation involves moving the much
heavier protons relative to the neutrons to which they are bound by the strong interaction.
As aresult, most E1 strength corresponds to an unobservable motion of the center of mass
of e system, and cannot contribute to decay rates. The exception to this is in isospin
changing excitations, which involve spatial separation of neutrons and protons, and hence
tend to occur at high excitation energy. This results in E1 rates which are orders of
magnitude slower than single-particle estimates.

In contrast, E2 transitions are enhanced by collective participation of many nucleons
in a single transition. Frequently, an E2 (or M1) branch will dominate decay of a nuclear
level even though it has an allowed E1 transition to another final state. Furthermore, since
the major shells in nuclei are frequently comprised of single-particle states of the same
parity, many states have no angular momentum allowed E1 decay. The distinction between
E1l (allowed) and other (forbidden) transitions, so useful in atomic physics, completely
breaks down in nuclei. The assumption that there could be a nearby state connected to an
isomer by an E1 operator which itself decayed rapidly is almost surely incorrect.
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These differences have implications for the nature of multiphoton excitation in the
atomic and nuclear cases. In the atomic case, it is easy to find a state which has a large E1
matrix element with a given isomeric state. Pumping can proceed by Rabi osciilations
between the two states. In the nuclear case this is very unlikely--most states do not have
any nearby state to which they are connected with an appreciable E1 matrix element.
Furthermore, because of the high (kr) values associated with nuclear transitions, isomeric
transitions tend to require much higher multipolarity than E2, and hence have very large
total angular momentum. States with rapid decay would have much smaller values, and
could not be reached via a single E1 transition.

However, multiphoton upconversion need not proceed only by Rabi flopping
between two states; since the process is to proceed by many photons, the angular
momentum could be changed by one unit on each of many steps. Furthermore, it might be
possible to engineer a mixed process, whereby initially the isomeric state would undergo
Rabi oscillations with a more distant resonance with which it is connected. This would be
followed by a few steps in which the angular momentum was lowered appreciably, to the
final lasing state which could also oscillate with another distant resonance state for a few
steps. This would lead both to larger matrix elements and larger energy denominators, and
it is an open question at this point whether this would help or hurt; however, the large
matrix elements-would help at every step, whereas the large energy denominators would
only hurt at every other step. This possibility should be examined critically and in detail.

In summary, the following things seem to be clear:

1. Nuclear structure is such that a state with a direct dipole connection to an
isomeric level is very unlikely to be a suitable lasing or feeder state.

2. Many nuclear states have no identifiable nearby state with which they connect
via a dipole operator. This will eliminate many of the isomeric transitions
under consideration.

3. Use of distant resonances for upconversion should be considered.
We turn now to a discussion of off-resonance photon excitation of nuclei.

One of the proposals for making a gamma-ray laser involves pumping a metastable
excited state up to a higher, short-lived lasing state which would then decay to the ground
state or some other lower energy state. Because of the relatively low level densities in
nuclei, compared with the energies of available intense sources, it is necessary to

79




understand the off-resonance or virtual excitation of these lasing states. This off-resonance
excitation in the nuclear context was first proposed by Arad, Eliezer and Paiss (Ref. 30).

They estimated the cross section using the Breit-Wigner formula:
2
_A e I

Iz [E-E,) + T, 12)%]

3

where A is the particle wavelength, the I''s are the elastic, inelastic, and total widths, and E
and E, are the energies of the particle and the resonance.

This expression is derived for particles with energy near the excitation energy,
(E-Eo)/Eg<<]1. Usually, when one refers to far off-resonance processes, one means
I't <<(E-Ey), and for these off-resonance processes the Breit-Wigner formula is accurate,
again provided that (E-Eg)/Eq<<1. However, for very-low-energy particles, in the limit
E/ Ep<<1, it is necessary to include the energy dependence of the width I'e. This results in
a finite elastic scattering cross section and an inelastic cross section with a singularity which
is only linear in the wavelength A.

For low-energy photon scattering, a similar situation arises. Following the
treatment in Sakurai (Ref. 43), but neglecting a small contribution due to emission
preceding absorption leads to a multiplication of the naive Breit-Wigr.er result by the ratio
of the on-resonance wavelength, Ao, to the res. photon wavelength, A:

;} (E +E)

2 (@K, +<r /2>2]

Before presenting detailed results, some comments on these infinite cross sections
are in order. First, there is nothing necessarily unphysical in an infinite cross section--it is
the count rate that must be finite. In the particle case, the count rate remains finite because
it is the cross section multiplied by the velocity. In the case of photon-induced El
excitations, the long wavelength singularity is eliminated by the polarizability of the atom,
which decreases the field strength at the nucleus by the ratio of the nuclear size to the
wavelength squared. (See the discussion by Brueckner, elsewhere in this report.)

For photons driving transitions of other than electric dipole character, a more
careful treatment of the count rate is necessary, since for fixed number densi‘, the flux
does not decrease with the energy of the photons. The count rate, I, is given by

[=Nsonyc/V,
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where Ny is the number of scatterers, o is the cross section, ny is the number of photons, ¢
is the speed of light, and V is the volume. Once the wavelength of the light is as long as a
characteristic dimension of the target, the volume must increase as the wavelength cubed.
The total power required therefore increases as the wavelength squared, and the ratio of
count rate to input power actually tends to zero as one over the wavelength. Despite the
infinite cross section, the result is physically reasonable.

These corrections having to do with the size of the target are only of interest by
virtue of showing that the infinite cross sections are not a problem per se. Numerically,
getting the correct behavior is crucial. Incorrect treatment of the frequency dependence at
the threshold has led to published estimates that are off by several orders of magnitude.

We shall now compare relative cross sections with and without the threshold factors
for three cases of interest. These are the original isomeric case proposed by Arad, Eliezer
and Paiss, a pair of "generic" nuclear cases, and finally, a case from atomic physics in
which the upconversion was observed. In all cases, the cross sections are normalized to 1
at the resonance.

In Fig. 34, the naive Breit-Wigner and correct low-energy cross sections are
compared for the transition studied by Arad, Eliezer, and Paiss. Only the energy regime
around 1 eV, the energy they proposed, is shown. For these energies, neglecting the
frequency dependence introduces an error of about 6 orders of magnitude.

In Fig. 35, relative cross sections are presented for photons in the energy range C.1
to 10,000 eV, exciting resonances at 1000 and 10,000 eV. Again, we find that neglecting
the threshold factor leads to severe errors. From these calculations it would appear that far
off resonance triggering of a gamma-ray laser will be impossible.

Despite these difficulties, "upconversion” or "lifetime shortening” has been
observed in atomic physics. Cooper and Ringler (Ref. 44) have observed decays from a
forbidden two-quantum transition in He, by applying microwave radiation to virtually
excite a nearby state with an allowed two-quantum decay to the ground state. In their case
however, the photon energy was about one third the transition energy. This leads to a
substantial threshold effect, but not so drastic as to make the induced decay unobservable.
Our calculated relative cross sections are shown in Fig. 36. The microwave energy for
their experiment is indicated with an arrow. Since their experiment relied on relative cross
sections, their results do not directly test the details of the threshold dependence.
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Figure 34. Relative cross section as a function of photon energy is shown
for the nuclear case proposed by Arad, Eliezer, and Paiss, for the naive
Breit-Wigner case, and for a case with the correct threshold behavior.
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Figure 35. Comparison of nalve and correct Breit-Wigner expressions
for typical nuclear cases of interest.
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In addition to the absorption-emission process, their experiment observed the stimulated-
emission process. Theoretically, if one were many widths from resonance, (Eo-E) >> I,
but still close to the resonance in the sense that (Eq-E) /(Eo) <<1, these processes would be
of comparable magnitude. This in fact was the case. Since these are the conditions under
which single photon upconversion of a gamma-ray laser occurs, these processes should be
included in future investigations.
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Figure 36. The effect of the correct threshold behavior on the atomic physics
experiment of Cooper and Ringler, with their photon energy indicated by the
arrow. Because their photon energy was an appreciable fraction of the
resonance energy, the threshold effect was not fatal to their experiment.

In summary, we conclude:

1. It is essential to use the correct threshold behavior when using the Breit-
Wigner formula to estimate upconversion cross sections.

2. This factor greatly reduces the probabilities for single-photon upconversion.

3. Given a material with an excitation energy from a metastable state to a lasing
state, only a few times the energy of available light sources, single-photon
upconversion might be possible. In that case, absorption-emission and
stimulated-emission-emission would be of comparable strength, leading to two
gamma-ray lines with energies differing by twice the incident photon energy.
The existence of this second line has been overlooked in previous discussions
of the gamma-ray laser.
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C. MULTIPHOTON EFFECTS ON ATOMIC AND NUCLEAR SYSTEMS

Most work in experimental atomic and nuclear physics has been done under
conditions where single-photon processes are predominant. Thus, for purposes of
theoretical evaluation one calculates a cross section, assuming the interaction between a
nuclear or atomic system and a single photon of the electromagnetic field. Such a cross
section would be independent of the field intensity and the only effect or the interaction
would be to induce a transition between well-established nuclear or atomic states. In
stronger fields, the electromagnetic interaction modifies the nuclear level structure so that
the dynamics is best described by a combined nuclear photon field Hamiltonian (Ref. 45).
Under such conditions the transition matrix element between states or the absorption cross
section would be a function of the intensity of the field. One effect of this nonlinear
interaction is the A.C. Stark shift observed in atomic systems (Ref. 46). The
electromagnetic field of the photons modifies the level structure so that frequency changes
in the resonance of the cross sections as a function of the field intensity can be observed.
As far as we know, no effects have been observed on nuclear structure; however, there is
great interest in observing such effects both for their intrinsic worth and for possible
application to the development of gamma-ray lasers (Ref. 1).

In this section we describe our parametric study of the possibilities for the
observation of multiphoton processes on the nuclear level and their application to the
development of a gamma-ray laser.

For the investigation of multiphoton processes we have selected a three-level
system was shown in Fig. 33. States |a> and lc> are excited states with decay rates
Yc >> Ya and |b> is the ground state. It is assumed that initially state |a> is populated. The
purpose of the photon field, with how < E¢ - E, is to excite the higher and faster decaying
level |c> so that an inversion is produced between b and ¢ and at the same time a high
stimulation cross section is obtained for the transition ¢ to b. An experimental depopulation
of state |a> with an electromagnetic field would be considered a major proof-of-concept
achievement on the way to the development for gamma-ray laser.* We have therefore
looked at length at the conditions under which such an experiment could be successful.
Our calculations were performed for atomic and nuclear systems in parallel because
multiphoton processes have already been observed in atomic systems and for this reason it

Rapid pumping out of an isomer would also be intrinsically interesting, and would likely have practical
applications even if genuine lasing of the decay were unattainable.
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is often assumed that they can be observed in nuclei. However, nuclear radii are five
orders of magnitude smaller than atomic radii. Thus, for photons with similar wavelengths
the interaction would be drastically reduced. Furthermore, nuclear dipole transitions are
often inhibited by nuclear structure effects, as discussed in detail in Section B. Constraints
imposed by nuclear structure continue to be important at every step of a multiphoton
process.

Our investigation of multiphoton interactions with atoms or nuclei was based on the
semiclassical formalism described in Appendices H and I. Since calculations using dressed
state (Ref. 44) theory have been reported in the literature (Refs. 47 and 48) we show the
equivalence of semiclassical and dressed state approaches to the treatment of the interaction
of electromagnetic radiation with atomic and nuclear systems in Appendix H. In
Appendix [ the actual dynamic equations for the density matrix in the rotating wave
approximation are derived from

v % _i[H,+Voe]arp (44)

where H,, is the noninteractive part of the Hamiltonian, V is the interaction Hamiltonian and
[ is the decay matrix which is a function of ¥; and Y. (There are two simplifying
assumptions made in these calculations. First, the near-resonance response was assumed.
The corrections analogous to those presented above for single-photon processes have not
been incorporated. Second, the rotating wave approximation is used. Both these
approximations are valid near resonance. We believe that the trends revealed in this
parametric study will hold up after these approximations are removed.) The three-state
system shown in Fig. 33 is used to model the nuclear or atomic system. Application of
equation 1 to this model gives 10 complex (or 16 independent real) equations for the
diagonal and off-diagonal matrix elements of the density matrix p. Of special interest are
Pbb and pce which give the population of the ground state lb> and the excited state or upper
lasing level le>.

The transition matrix elements have to be calculated according to the multipolarity of
the allowed transition (E1, E2, M1, etc.) and the number of photons participating in the
process. For E1 single-photon transitions, the interaction Hamiltonian is

V=-p /Z@_“l(a+a+)—p, /m(a'+a"‘) , (45)
Vo Va
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where p is the dipole moment, ® the frequency of the incoming photon, ' the frequency

of the outgoing photon and V;, the normalization volume. The matrix element is calculated
from

Vif=<i|V|f> ) (46)

For the transition from level a to level ¢, where a photon of energy hw is absorbed by

level c,

Vo =<a;n,0 |V|c;n-—1,0>
2

=r 2ol
T A @7

where [y is the dipole moment matrix element, ryc is the effective atomic or nuclear radius
between states a and ¢, 0 is the fine structure constant and I is the photon beam intensity
in units of W/cm?2. States la> = la; n, 0> and leas> = le;n -1, 0> are defined in
Appendix L

In terms of single photon matrix elements, the matrix element in question can be
calculated according to perturbation theory from:

(m) <alvlt><1lviz>=<m-1lvic,>
Vo =

L MO0+ )T (0 20~ ) = (@ + (m-Do - 0, )

States [1>, [2> through Im-1> are the intermediate states obtained by excitation of real
states of resonance. In our case, in the three-level system they would involve la> and le>
only. This is a simplifying assumption which we expect to have no effect on the observed
trends of the calculations. For the interpretation of an experiment at high intensities the
contribution to the time variation of the populations P,, Py, and P¢ for the initial
intermediate and ground states of all the single and multiphoton processes have to be
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considered. The tails of many levels far from the isomers could make important
contributions to the MP multiphoton transitions matrix elements.

We were interested in a parametric investigation to determine the effect on the
populations of levels a, b, and ¢ of various parameters such as the intensity I, the parameter
A = E; — E¢ — o or the off-resonance effect, the photon number m, the strength of the
interaction ryc (the effective nuclear or electronic dipole radius) and the pulse length of the
photon beam At.

In the next section we give some results for the three-state system shown in Fig. 33
for:
(@ rac= 0.51078 cm (typical atomic radius)

(b) rac= 51013 cm x 0.1 (typical nuclear radius times a minimal hindrance
factor)

Finally, for a realistic case we considered the time dependence of the population of
level lc>, since a large population inversion, in addition to depumping, will be required for

a genuine laser.

Before presenting the detailed calculations we want to stress a major qualitative
result; atomic dipole moments are five orders of magnitude larger than their nuclear
counterparts. For fixed count rate, a 105 decrease in matrix element will require a 1010
increase in beam intensity. While attending to the detailed results of the parametric study,
one should not lose sight of the enormously increased difficulty in working with a nuclear
system.

The discussion of single-photon excitation focused on the Breit-Wigner expression
for resonant cross sections. In the multiphoton case we will frequently present plots of the
population of the ground state |[b>, Pp. For all the cases under discussion, intensities, I,
are quoted, assuming a characteristic atomic system with a dipole moment of about 1A; the
given values of Py for a nuclear system would be obtained with intensities some 10 orders
of magnitude larger. Unless otherwise noted, the population probabilities are given for the
end of a 5 ns burst. The lifetime of state {c> was 1 ns, so the pumping out should be
completed. The lifetime of state |a> was taken to be 107 s.

In Fig. 37, multiphoton population of the ground state, Py, for ng = 9 is plotted as
a function of the detuning, or the distance off resonance for several photon intensities. For
the lowest intensity plotted, 5 x 1013 W/cm2, we find the peak population to be around

30 percent, and to fall two orders of magnitude as the energy moves 10 widths off
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resonance, in keeping with the single-photon results. Increasing the intensity by a factor of
two leads to a maximum final population, Py, of 1.0, and a very slow decrease compared
with the single-photon prediction--the width has been effectively broadened by around a
factor of 10. Further increases in the intensity lead to a further increase in the effective
width. If in the nuclear depopulation case, one is intensity limited, it will be very important
to have minimal detuning,.

S x 10%
° 'oll
10

I~ 's\\-\'lo“
o N N

N N
'\ N e

L 1a3yx 10" Wem?

-
e

-
o

-

-
o

>

PROBABILITY OF POPULATION
OF STATE b, P,
H

\
100

$
100 101 102 [ 10¢ 108 108

DETUNING PARAMETER A IN UNITS OF y,

10

12-20-00-9

Figure 37. Multiphoton pumping of the isomeric level as a function of the
detuning parameter in units of yo. The ordinate is the population of the

ground level b. These results are for typical atomic transitions.
For typical nuclear transitions the power requirements
would have to be increased by a factor of 1019,

The population probability is presented as a function of photon number for both
off-resonance and on-resonance energies, again for several intensities. In the off-
resonance case (Fig. 38), w¢a = 100 eV, and @ = 10 eV. For electric dipole transitions,
parity requires an odd number of photons to be absorbed, hence there is no photon number
which is on-resonance. We find that for high enough intensities the ground state is nearly
fully populated with a single photon, and the multiphoton process would fully populate the
ground state. As the intensity decreases, the single-photon population begins to fall first,
but the multiphoton ultimately falls much faster, as expected.

In Fig. 39, the same calculations are repeated, except the excited state energy, tca,
has been changed to 90 eV, allowing on-resonance excitation of level lc> with a 9-photon
process. The results are quite similar to w¢a = 100 eV, except for the 9-photon, on-
resonance case (Fig. 39) when the population of state |b> saturates even for the lowest
intensities.
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Figure 38. Multiphoton pumping of the isomeric level |a>. The abscissa gives
the number of photons used in the process and the ordinate the population
of the ground level [b> when wca = 100 eV and ® = 10 eV. Since an

odd number of photons is required for excitation,
this process cannot be on-resonance.

Figures 40 and 41 illustrate ground state population as a function of field intensity.
In Fig. 40 this is shown for off-resonance, 9-photon excitation of a 100-eV state with
10 eV photons. The probability increases like the intensity to the 9th power until it reaches
about 10 percent at about 2 x 1015 W/cm?2, at which point the saturation effects level out the
curve. For the single-photon, on-resonance excitation in Fig 41, there are two significant
differences. First, the saturation occurs at a much lower intensity; only about 100 W/cm2.
Second, the fall-off with intensity is only linear, and hence is much more gradual.

Single-photon, off-resonance depopulation of the isomeric level as a function of
photon energy and field intensity is shown in Figs. 42 and 43. For low intensities,
population of |b> is proportional to the intensity for all photon energies. For high ficid
strengths, or energies close to the resonance, saturation is again clearly visible.
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Figure 39. Multiphoton pumping of the isomeric level la>. The abscissa gives

the number of photons used in the process and the ordinate the population
of the ground level |b> when finca = 90 eV and fio = 10 eV.

This process is on resonance for ny, = 9.
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Figure 40. The effect of photon field intensity on pumping of the isomeric
level a. The nine photon transitions are used in the calculation with
flweq = 100 eV and fio = 10 eV.
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Figure 42. Single-photon depopulation of the isomeric level la> as a function
of photon energy for various photon field intensities with fiwgca = 100 eV.
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Figure 43. Single-photon depopulaton of isomeric level la> as a function of
photon field intensity, |, for various photon energies with fingca = 100 eV.

While it will probably be important to use on-resonance excitation to get a workable
gamma-ray laser, there are certain subtleties worth noting about the off-resonance region.
These have to do with the fact that for fixed intensity there is a higher density of low-
energy photons than there would be for high-energy photons. Furthermore, once you are
very far from resonance it is possible to benefit from the factor of 1/®w from density of
states. Figure 44 shows the probability of populating the ground state as a function of
number of photons for several values of the intensity, when exciting a 100-eV resonance
with 1-eV photons. Compared to the similar curve for 10-eV photons in Fig. 38, we find
the 1-eV case much more favorable. For irtensities of 5 x 1015 W/cm2 or higher, the
population is saturated. For the single-photon case, the results are essentially the same,
since the energy denominators are nearly equal. For all other cases, the lower energy and
concommitant higher photon density are an advantage, especially for the cases with large
photon numbers.
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Figure 44. Off-resonance depopulation of the isomeric level la>
as a function of photon number n, for 1 eV photons.

Figure 45 presents a parametric study of the effects of both detuning and photon
number on final ground state population. The more rapid fall of population with intensity
when more photons are involved is clearly seen in this figure. The effects of detuning are
smaller for the multi-photon cases. Since increased intensity both broadens the resonance
and favors multi-photon processes, the penalty for either decreases.

The ground state population responds very differently to changes in decay rate,
depending on whether the process is on- or off-resonance. This can be deduced from the
Breit-Wign:r line shape, which on resonance varies as the reciprocal of I'j, but off-
resonance mcreases linearly in I'j. The off-resonance case is studied in Fig. 46, where the

increase in population with increasing decay rate is clearly illustrated.
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Figure 45. Off-resonance depopulation of isomeric level la>, as a function
of photon field intensity for ditferent detuning parameters and
number of photons participating in the process

The final two figures are specifically oriented to triggering nuclear gamma rays. At
present there are no overwhelmingly attractive candidates, so as an illustration we have
taken parameters from Hf 179, and modified some of the structure to make it a better case.
There is a 25/2- isomer in Hf 179 with a 7/2+ excited state only 200 eV above it. We have
assumed they can be connected by dipole radiation with a matrix element as large as is
found in that region of the periodic chart. In other words this "mock-hafnium" calculation
is a drastic overestimate for that nucleus, but it is not inconceivable that such a favorable
case would be found somewhere. We estimated the decay rate of state [c> from the
Weisskopf formula for an M1 transition with a factor of 100 inhibition, giving a rate of

Yo = 4.3 x 1011/s,

For single-photon, off-resonance processes to populate this state appreciably would
require an intensity of 1024 W/cm?2 (see Fig. 47). For a faster decay rate, complete
depopulation of the isomer could be achieved. For on-resonance excitation using 200 eV
photons, intensities of 1014 W/cm?2 would suffice for depopulation, unless the rate were
too fast. As mentioned above and illustrated in the figure for the on-resonance case, too

fast a decay rate, Y, diminishes the out pumping.
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Finally, we would like to remind the reader that the ability to pump out the isomer is
not sufficient for the development of a gamma-ray laser. What is actually desired is a
population inversion. To achieve this with the rapidly decaying nuclear states will require
very short, intense bursts. A sample of what one might expect in terms of population as a
function of time for the three states in our mock-hafnium case is shown in Fig. 48. One
desires not merely to increase Py, but rather to achieve at some known time a population
inversion where most of the nuclei are in state |c>, as shown at t = 0.5 ps. Identifying the
genuine candidates, collecting the data necessary for more realistic calculations, and
performing those calculations are the next tasks to be performed.
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Figure 48. Level populations for the three-state system as a function
of the puise length of the exciting photon beam
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D. CONCLUSIONS

Most plans for a gamma-ray laser can be divided into three stages: (1) preparation
of an isomer or storage state; (2) upconversion to a lasing or intermediate state; and
(3) extraction of the energy. This paper has focused exclusively on the upconversion
process.

So much experience and expertise derives from lasing in atomic physics that it is
important to note the differences in nuclear and atomic systems. The essential difference is
the much smaller nuclear size, leading to matrix elements five orders of magnitude smaller
than their atomic counterparts. This results in cross sections ten orders of magnitude
smaller. An essential step in the development of the gamma-ray laser will be to find
materials and procedures to overcome this disadvantage.

There are a number of specific results obtained in our investigations. First, we
have derived the correct expressions for the off-resonance cross sections and power
requirements for single photon excitations. Previously used expressions have
overestimated the cross sections and underestimated power requirements by as much as six
orders of magnitude.

A parametric study of multiphoton upconversion was completed, relying on some
simplifying assumptions for the calculations far from resonance. These calculations were
carried out for both atomic and "mock-nuclear”" systems. The results underscore the
difficulty of working with nuclear systems due to the 10 orders of magnitude greater power
requirements, and point to the need for detailed evaluation of candidate isomers revealed by
computer searches.

We are now positioned for calculation of on- and off- resonance, single- and
multiphoton upconversion using the most realistic nuclear structure information available.
We hope to begin the code development and isomer evaluation in the coming year.
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V. AN INVESTIGATION INTO SOME PROBLEMS IN
THE DEVELOPMENT OF GAMMA-RAY LASERS:
ATOMIC SHIELDING OF NUCLEI AND
UPCONVERSION BY MASSIVE PARTICLES

A. INTRODUCTION

In this paper several basic physics questions associated with making a gamma-ray
laser are discussed. These include constraints on proximity of other states, pumping
requirements and shielding, and the use of particles with mass to drive upconversion.

B. ISOMER DECAY

Consider an isomer with lifetime of 107 s (115 days) which decays by an E5
transition. The transition rates for electric and magnetic multipoles for a nuclear dimension
of 10-12 cm (Refs. 49 and 50) are given in Fig. 49. The excitation energy for a decay rate
of 10~7/s and an ES transition is 390 keV. This state could decay by other transitions if
lower-lying levels were accessible. The distance below the isomer level at which a level
could lie, without appreciably affecting the isomer lifetime (50 percent branching) is at

most:
Transition Ag

E1 3x 1072 eV
M1 02eV
E2 0.2 keV
M2 0.5 keV
E3 9 keV
M3 20 keV
E4 90 keV
M4 170 keV

The existence of the isomer therefore is a severe constraint on the lower-lying levels.
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C. PUMPING TRANSITION

Many gamma-ray laser proposals consider the excitation of a level of a few electron
volts above the isomer level, which is the upper level of a lasing transition or which decays
to an upper lasing level. For the example in Section B, an E1 transition could be produced
by radiation absorption. If this level decayed directly to the ground state by an E4
transition, the lifetime would be several seconds. If the decay were by an E1 transition to
an upper lasing level, this level would be reached by an E2 transition from the isomer and
therefore would lie less than 0.2 keV below the isomer. For a spacing of 0.2 keV, the
pump level would decay by E1 transition with a lifetime of about 10 us. The lasing level
would decay by an E3 transition, with an energy of nearly 390 keV, with a lifetime of
50 us. This possible level sequence therefore is suitable for a gamma-ray laser.
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If the upper pump level were reached by an M1 transition and decayed to an upper
lasing level by an E1 transition, the lasing level could be reached by an M2 transition from
the isomer and would lie less than 0.5 keV below the isomer level. The decay time from
the pump level to the upper laser level, for a spacing of 0.5 keV, would be about a
microsecond and the M3 decay of the lasing level a lifetime of about 30 ps; again, possible
for a gamma-ray laser.

D. PUMPING REQUIREMENTS

The field at the nucleus required to excite the upper pump level can be estimated
from the requirement that the excitation rate R (pump) exceed the decay rate R (laser) of the
upper lasing level. This condition for an E1 transition is

1
pump
The pump width is I';ym, = 1R (decay) giving the necessary pumping flux (at the nucleus)”’

R (pump) = %—“- <eEr>2 >R (laser) . (48)

r

2
E 1 ¢
c R (laser) R (decay) . 49

4“ 81:2 02< 1'2> ( ) ( Y) ( )

For a lifetime of the lasing level of 50 ps and of the pump level of 10 ps, the required flux
at the nucleus is 0.33 W/cm2. The electric field at the nucleus is 0.10 esu or 30 V/cm.

To produce this field at the nucleus, a much larger external field must be applied.
An external electric field is screened by the polarization of the atomic electrons.*™ A
theorem due to L.I. Schiff (Ref. 51) proves that a uniform electric field is exactly cancelled
at the nucleus by an atomic electron polarization. A similar effect in the electronic excitation
of heavy atoms is analyzed by Wendin et al. (Ref. 52). This is easily seen to be required
by the absence of acceleration of a neutral atom by a uniform electric field A spatially
varying field at the nucleus therefore is reduced relative to the external field by a factor of
the order of (atomic dimensions/wavelength) as discussed in Ref. 50. For a Fermi-Thomas
atom this factor is of the order of 107 AE(eV)2z-2/3. This is a major correction to the laser

This is the energy flux required by excitation of a single nucleus, in an on-resonance absorption of
visible light. Excitation of an appreciable percentage of the nuclei in a solid sample ¥>u!ld be many
orders of magnitude higher.

The screening effect of electrons was pointed out to the author by C.K. Rhodes.
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flux requirement and must be carefully evaluated. The effect is probably small only if the
radiation wavelength is smaller than atomic dimensions.

The screening effect is much less important for an M1 transition, the polarization of
atomic electron spins having little effect on an external magnetic field. The flux required is
the order of

2 2
c fn = 8; - ﬁ;?:_ R (laser;'lgl (decay) , (50)
where
gn = nucleon gyromagnetic ratio
A¢ = nucleon Compton wavelength.
This is increased relative to the example of the E1 transition by a factor of
2
(8:I;~Ic) = 625 , 1)

giving an incident flux of the order of 20 W/cm2,

E. SEARCH FOR CANDIDATE ISOMERS

An isomer with a level only a few electronvolts above the isomer level could have
decay excited by interaction of the level with the atomic electrons, by internal crystalline
fields, by close collisions in a high-temperature gas, or by bombardment with ions at
energies too low to cause direct excitation by nuclear collisions. For example, isomers in a
thin foil bombarded by a relatively low-energy ion or electron beam might show an increase
in decay rate. This could be the easiest procedure for a search for isomers possibly suitable
for a gamma-ray laser.

1. Isomer Excitation in Collisions

An isomer bombarded by ions with energy too low to produce a nuclear collision
can be excited by the coulomb field of the ions. The perturbing potential due to the
transverse component of the field is
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_p? NP o (52)

(P2 +v )"
with rg the screening radius of the bound electron and F the impact parameter (closest
approach). The excitation probability for the isomer level with Ae ="hw is

2

P (excite) = %@- , (53)

with
oo —o r/r'
\'% .[zez dt
@ 2.32
A (p +vt )

= 2ze2 np (’ip) e‘P/rt )

exp ( (5 4)

This gives an excitation cross section of the order of

Vo !2

=2x { pdp
0

2
mz 8nr N

—/./
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8n (=) (2 1og Pmax (55)
3 fiv N € Pmin

n

This result can also be derived from time-independent perturbation theory, treating the
interaction with the ion by perturbation theory. The result, ignoring screening, is

2

dO’-— IV 2 kM“°dQ' (56)
2rh)'k
with
v LR O__ze? O kT g




e’z [ * @ () il I,
=—2'[ch Vo € dr
q
41te Z.—
< 1qry (57)
with
-
3 -7 -®
- - -
T = e ' t ' '
N= v, @Yy @) d . (58)

This gives, averaging over the orientation of rn,

c=3r 8n ( Oge ’_L}:_:I )

This is the same as equation 55 if the logarithmic factor is interpreted to be the ratio of the
interaction ranges.

In equations (54) and (57), the cutoff ranges are of the order of

P =%
max -
r }lesser of

S
2Z - e2
Pin S —aoollel— (60)
ion

These estimates of Pmas and Pmin are valid only if pmin is greater than the nuclear radius.
For bombarding protons and a screening length equal to the Fermi-Thomas length
agziso~ 13, proton energy above which pmas =1, is

o Ae? (eV)
epmmn =36.6 T . (61)

180

The electron screening therefore is usually dominant. The minimum distance Gmjn is
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This is greater than the nuclear radius for zjsomer = 64, for proton energy less than 12 MeV.
Thus, for protons with energy of a few mega electronvolts, a screening length rg of
10-% cm, a nuclear radius of 5 x 10~13 cm, the cross section for excitation is roughly
4 x 10727 cm2. This depends only weakly on the excitation energy h, as long as ® is less
than v/rg.

As an example, we consider isomers embedded in a foil with thickness much less
than the proton range. The excitation rate for a proton flux ¢ is

rate (ex) = Gex ¢ Nisomer , (63)
which will exceed the spontaneous decay rate if
Oex ® > rate (decay), (64)
giving a particle current of S MeV protons of
j> 4.x 107 rate (decay) A s/em? . . (65)

Thus, for a lifetime of 107 s, a current of 4 A/cm2 will roughly double the net decay rate.
A current of 1 mA/cm2 would give an increase of the order of a percent in the decay rate,
which is easily detectable. The excitation probability depends, however, only weakly on
the excitation energy hw, making it difficult to determine the energy from measurement of
the y-rays.

2. Isomer Decay Induced by Atomic Electrons

An isomer can decay by coupling to the internal conversion resulting from atomic
electrons, with the transition energy carried off by the electron. The internal conversion is
often large, showing the strong perturbation of the electromagnetic transition by the
electrons. A related process can also occur if a nuclear level lies just above the isomer,
from which a transition to an intermediate state can be produced by the electron coupling.

We assume,
Yo = isomer level; high angular momentum relative to ground state;
¥, = final nuclear ground state;
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¥
)

¢1 = final electron state with AL = 1 from initial state

intermediate nuclear state, angular momentum one relative to isomer;

initial electronic state

The matrix element for the decay is

62
2 ¢1\|’nT'T— \Vo¢0 1
T=Iy E,+g,-E,—¢

n 0

1

X \VZ, e l'N T‘:2)—!— Va (66)
The matrix element for the direct decay is
i e L~
=, (kry
L‘VZ' eE I'N W WO (67)

The sum over n in equation (66) can be approximately by closure, replacing the excitation
energy by an averge AE. The ratio of the matrix elements then is of the order of

-, [-2
) kry
M(elcctromc)zez<i><N >s@L-1)
M (direct) r AE < &}N)[’l >
2
- (68)
AE T,

with 7(_ the y-ray wavelength and r; an atomic dimension. As an example, we take r, to be
the Fermi-Thomas ag/z1/3,L = 5, and z = 64. The ratio of the matrix elements then is

M (electronic) _ 128 A (69)
M (direct)  AE (Rydbergs) 2,

For a 100 keV y-ray, A/ag = 0.04, giving a ratio of 5/AE Rydbergs). For typical nuclear
level spacings of many keV, this effect is small. For an excitation energy of a fraction of a
Rydberg, however, the ratio is large and the isomer decay would nearly always be
accompanied by atomic electron ejection.

The presence of the electron enhances the decay because the bound electron can
provide a unit of angular momentum for the decay without the severe kinematic inhibition
which comes with low- .ergy free electrons or photons. Provided bound electrons with a
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given higher L are present, this enhancement need not be restricted to AL = 1 processes for
the isomer and the electron.

Consider a nucleus with isomer level "0" and an excited state ""1" which is the
possible state to be reached by external excitation. If the level is reached by an electric
multipole transition, the matrix element is of the order of

- 1-1
. =, (Qry) .
M,, J' V] (ry) BT —F— v, () &y

with ry the nuclear coordinate. This transition can also be produced by the electrostatic
interaction with an atomic electron excited by the external source. We let the initial electron
level be "a," the intermediate level "n," and the final level "b." The matrix element is

T b 2 InL A —
Mip0a = Z de f Vit e T P @)W, (ry) dry 0 () 0, ()
1]

«EfoamErend |

with
AE-E +ea+hw-E ~-¢g; .
This can be estimated, using closure on the n sum, which gives
2 f— — —.
Mis, 0a ='§fjdfj‘¥; () " P @y ?) ¥, (ry) dr b (M eET, (1)

This matrix element in finite only if the electronic state ¢y, differs from the state ¢, by L + 1

units of angular momentum.

The matrix element for the transition a — b is, however, not necessarily small since

the integral over r has the fact (N r)/r2. The ratio of the matrix elements is the order of

Mlb, 0a _ _L te2 1
M L.L-
1,0 AELd

This ratio can be very large if the system is near resonance and the radiation wavelength
g~! is large compared with the electronic scale a, which is possible if the excited nuclear
state is only a few electronvolts above the isomer level.
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VI. INVESTIGATION OF ENERGY TRANSFER TO NUCLEI
THROUGH ELECTRON NUCLEAR COUPLING

A. INTROCDUCTION

In the other chapters of this report pumping schemes have been examined which it
is hoped would excite nuclear levels that could lead to grasing transitions. These schemes
involve the direct transfer of energy from an external electromagnetic field to the nucleus
while totally ignoring the intervening electronic cloud of the atom (Ref. 53). Brueckner*
has pointed out that under some conditions the electron cloud can be very efficient in
shielding the nucleus. On the other hand, the electron cloud can also serve to enhance the
coupling of the electromagnetic field to the nucleus. This chapter describes a technique
utilizing semi-classical calculations to study the effect of electron-nuclear coupling in
mediating that transfer. The technique has already proved to be successful in atomic and
* In the case of an atom, two or more valence electrons interact
with the atomic nucleus and with each other through the coulomb field. In the electron-
nuclear case, one or more valence nucleons and one or more extranuclear electrons interact

molecular applications.*

with each other and with the nuclear core. In the process, both nuclear and coulomb
potentials are active. In the application of the technique, a Hamiltonian is set up as in any
quantum mechanical problem; however, the trajectories of the valence particles are treated
classically. The use of the technique in the present case is driven by previous successes.
In atomic and molecular applications, calculated eigenvalues match their quantum
mechanical counterparts in precision (Ref. 54). It is the purpose of this work to investigate
the utility of using this semi-classical technique for nuclear-electronic interaction problems.

See Chapter V of this report.

The semi-classical approach, if valid, is very useful because it is amenable to computation. It has been
applied in at least two cases, one atomic and one nuclear. In the atomic case, the senior author,
D. Noid, used the approach to calculate eigenvalues in atomic helium. The results agreed with the
more precise quantum calculations to a high degree of precision. The semi-classical approach was used
successfully by L. Biedenharn in the studies of nuclear coulomb excitation to study and explain
experimental results in low-energy nuclear structure.

4
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In the realm of experimental physics, the excitation of nuclear isomers in laser-
produced plasmas has been reported (Ref. 55). The possibility of nuclear excitation by
laser-driven coherent outer electron oscillations has also been discussed (Ref 56). The
existence of electron-nuclear coupling has long been known in such phenomena as internal
conversion and electron capture. In the first, a nucleus deexcites by transferring energy to
an extranuclear electron. In the second, the nucleus transmutes by capturing a nearby
electron.

B. THE SEMI-CLASSICAL METHOD

The Hamiltonians for the problems to be posed are nonseparable in terms of nuclear
and electronic coordinates. The Semi-Classical Method (SC) was selected because the
quantum mechanical methods, e.g., variational and perturbation techniques, led to
difficulties in the selection of good basis sets. Very large numbers of terms would have to
be used, and to carry out the diagonalization of the matrices involved would put severe
burdens on the capacity and running times of the computer. Several problems were
examined:

1. Doubly magic nucleus with one valence proton and one €lectron
2. Two protons and one neutron (He-3)
3. Two protons and two neutrons (He-4).

The first problem, Nuclear Electronic Coupling (NEC), was modeled by the Hamiltonian
2 2 2 2 -1
P, +P P, +P
TN XY, -R
> +—5 +V, {1 +exp [(R,, 0)/3]}

(Z~-K)€e? e?
+11————re +ane-Rn ,

H=

(70)

where the first two terms represent the kinetic energies of the proton and electron,
respectively. The next term is the Saxon-Woods Potential (Ref. 57) describing the
interaction between the proton and the nuclear core. The last two terms are the coulombic
interactions of the electron with the nucleus and proton, respectively. The parameters are:

Ry = the nucleon position = (Xp, Yn, Zn)
Ry = the nuclear radius = 1.25 AV3 fm
a = the nuclear diffusivity = 0.65 fm
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1o = the electron position = (Xe, Ye, Ze)
K = 1, 0for the coupled/uncoupled case
T = the screening parameter.

In the NEC Code, the particles are confined to a plane, and motions are described
by Cartesian coordinates. The trajectories of both the coupled and uncoupled systems are

generated using Hamilton's equations of motion:

Xn:aaTi:
Yn=aa—€1(:
by, =‘§-§(—f:
PYn"gaT}:

—oH (71)

Initial conditions for the nucleon and electron trajectories are obtained by fixing the
positions and momenta at the classical outer turning points. For the proton, these
coordinates are found by applying a WKB approximation to the Saxon-Woods potential
well. Initial conditions for the electron are similarly obtained for the coulombic well as
described in Ref. 58. In obtaining the trajectories for both particles, integrations are
performed over short time intervals to obtain the coordinates for each point. The basic
time unit is the transit time of light through a distance of 1 fm (a basic nuclear dimension).
Typical trajectories with and without coupling are shown in Fig. 50. In this exampie, the
proton is situated on the surface of a nucleus having a radius of about 7.5 fm. Its trajectory
points involve integration steps of two basic time units (during which the proton moves a
distance of about 0.5 fm). For the electron’s orbit, steps of 25 basic time units were used.
Then, from these orbital calculations, the time-dependent dipole moment

Hx

Hy

= an - eX

€

eY, - eYe

eXn - exC

eY, - eye

is obtained. One then obtains the autocorrelation function of the dipole moment
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Figure 50. Uncoupled electron and nuclear trajectories (upper left). Magnified
nuclear trajectory (upper right). Coupled trajectories (lower half). In the
uncoupled case the maximum electron r = 1188 fm and the
maximum nucleon r = 8.66 fm.

+T
ClT) = <Bx(MHx(t+T)> = Im e [ m@kesna
T oo T
and, taking its Fourier transform, obtains the unpolarized power spectrum. The result is:
1 +o0 . 2 ) +o0 ) 2

This procedure is carried out for both the coupled and uncoupled cases. The
differences in the two spectra yield transition energies at which nuclear excitation may
result.

Similar procedures were applied in the He-3 and He-4 cases, but the Hamiltonians
are different. For He-3

=—1-[P +P _+P _+P _+P +P]
LTS S A A A A

+V(R12) +VR13) + V(R23) , (74)
where
V(Ry3) == A*B*(1/Ry3) * exp (-BRy3)
V(R;3) = — A*BC*(1/R,3) * exp (-BR3) (75)
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V(R73) = - A¥*BC*(1/Rp3) * exp (-BRy3) + 1.44Ry3 (76)
and for He-4
1 4
"= E (P2 + Pyi2) + VRpp) + VR 3) + VRyy)

* VRy3) + VRy) + VR5)

The two cases are similar. In He-3, there are two p-n and one p-p interactions;
whereas, in He-4 there is one additional neutron and, therefore, 6 two-body interactions.

In the latter case, there are, then, three more potential terms in the Hamiltonian, and these
have the same form as V(Rj7). Here,

A = depth of well in MeV
BC = scaling parameter for potential
B = scaling parameter for R in fentometers

Rjj = distance between particles i and j.

In the above expressions, there are two types of potential terms. One has the
Yukawa (see, for example, Ref. 49) potential to describe the short-range two-body nuclear
force which is the same for charged and uncharged nucleons. The other is the coulomb
potential acting between the pair of charged nucleons (protons) only. As before, the
particles are restricted to motions in a plane. The PNP computer code was used for He-3;
code NP2 is used for the four-body system. These codes, as well as NEC are listed as
Appendices K, L, M. The two problems were done for bare nuclei as a step in the
investigation of the validity of this classical approach in studying the dynamics of simple
nuclei. No electrons were involved. Only trajectories, not spectra were calculated.

C. RESULTS

First, let us consider the HE-3 and HE-4 calculations. The heart of the codes used
to solve the Hamiltonian equations is the well documented ordinary differential equation
solver (ODE) of Shampine and Gordon (Ref. 59). For a discussion of the algorithm, see
Ref. 60. Small time steps (At) are selected to keep the error estimate less than the
preselected value. Calculations of trajectories show that some interparticle distances grow
rapidly with time so that, even though the total energy and angular momentum are
conserved, the PNP complex behaves unstably in a manner indicating fragmentation into a
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diproton and a neutron. It must be pointed out that the nuclear potential failed to include
both spin and exchange. Since in chemical analogs, e.g., in Hy+, exchange forces are
known to be responsible for binding, one may logically attribute the fragmentation to that
omission.

As stated above, the He-3 and He-4 problems were exercises in studying the
application of semi-classical calculations to nuclear dynamics. The application of the
spectral analysis method to coupled electro-nuclear classical trajectories is more relevant to
the actual gamma-ray laser problem than were the two previous exercises. A good
approach is to select heavy nuclei so that excitations in the few keV to 1 MeV regime would
be realistically attainable. In addition, narrowing the candidates to nuclei consisting of one
proton outside a singly or doubly closed shell would more closely model the desired
situation. We would then have an inner electron interacting only with one loosely bound
valence nucleon anu a spin zero tightly bound nuclear core. The possibility of selecting a
nucleus with a valence neutron was dismissed. That choice would require using a magnetic
dipole interaction; and that, in turn, would complicate the Hamiltonian by making it spin-
dependent. Magic numbers for closed shells of protons include Z = 2, 8, 20, 28, 50, and
82; for neutrons, in addition to the same numbers, 126 is also a magic number. Therefore,
the nuclei initially studied include those for which Z = 29, 51, and 83.

We have already seen a comparison of the trajectories of uncoupled and coupled
systems. In Fig. 51, we again see orbitals for the three cases cited, but only for the
coupled motion. In Fig. 52, we see a sample of a time-dependent dipole moment derived
from such a trajectory. The higher frequency nuclear contribution is clearly seen
superposed on the electron motion. There is a visible change in amplitude and frequency
when the coupling is turned on. Finally, Fig. 53 shows the spectral intensities derived
from the autocorrelation functions of the dipole moments for the three cases. As Z (or A) is
increased, the effect of coupling greatly increases. For Z = 29, the coupled spectrum is
essentially identical to the uncoupled. But as Z is increased, the difference is quite marked;
and, for Z = 83 (209Bi = 208pb plus 1H), the electron's orbit is chaotic. From the
trajectories, one can see that the nucleus is at one of the foci of the electron’s elliptic orbit.
The major electron-nucleon energy transfer occurs during the short time of closest
approach, but the effect of the change is best revealed when the electron is furthest from the
nucleus.

114




Z=29 [y=3 2=29 ;=3

woos 0
004 184
> o8 > a9
79004 3.8 4
<9000 v vy v Py
4000 €000  §00.0 < %000 28000 34000 Rty s a0 s 0
x
w000 -
MO0 784
> oo > 004
*70.0- 184
000 B0 T p—— N
-#000 -NGO 0.0 xm %000 12800 a0 ey oo s o
. . ~
Z=83 ly=1 Z=83 lh=1
woeo .o
ne.04 18
<7800 4 7.8 4
~H080 r V] —
4000  .rao s neo w00 .o s a0 I wo
X

Figure 51. Coupled electron and nuclear orbits for three nuclei consisting of a

closed shell plus one proton. Nuclear core, one proton, and one electron are
interacting. In the figure, Z is the atomic number and I, the nucleon orbital

angular momentum. The distances X, Y are given in femtometers.
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Figure 53. Spectral intensities derived from magnetic moment autocorrelation
functions for atoms near closed nuclear shells. The uncoupled case is on the
left; the coupled on the right. In the figure, Z is the atomic number and
In the nucleon angular momentum. The energies are given in MeV.
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D. CONCLUSIONS

Preliminary studies with simple potentials indicate that the semi-classical model
does yield informaton on transition amplitudes for electron-nuclear excitation. More
realistic potentials, including spin dependence and exchange terms should be used in future
calculations. These studies indicate that nuclear excitation by electron-nuclear interactions
is a possible approach to achieving graser pumping.
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VII. A NUCLEAR LIFETIME MEASUREMENT--
AN UNCERTAINTY PRINCIPLE

Among the ideas that have been proposed for making a gamma-ray laser is the
scheme which requires the rapid narrowing of an inhomogeneously broadened long-lived
isomeric level by a series of specially structured RF pulses (Refs. 61 through 64). When
this scheme was recently resurrected, modified, and examined in depth (Ref. 65), the
criticisms that resulted included a dual statement ostensibly related to the time-energy or
time-frequency uncertainty principle. The linewidth (or lifetime)* of a level can be
determined only by an operation that lasts at least as long as the reciprocal of that linewidth
(i.e., the lifetime)* (p. 39, Ref. 1); a broadened level can only be narrowed in a time of the
order of the lifetime (Ref. 66). These ideas were debated during the workshop described in
Ref. 1.

To better understand this problem, we shall examine one method for measuring the
lifetime of an isomeric level. We shall assume, for simplicity, that the transition is not at all
internally converted, i.e., each transition leads to a detectable gamma-ray. Assume that, at
the time t = 0, we have a point source of precisely N, nuclei in an isomeric state of lifetime
T. A reasonable assumption for a laboratory setup is that, nearby, we have a well-shielded
Nal(T1) detector with an overall detection efficiency of 0.1 and a relatively negligible
cosmic ray or manmade background. The number N of isomeric nuclei remaining at time t
(Ref. 67) is given by

N(t) =Ny e™¥* , (78)
and the number of gamma-rays emitted per second by the point-source is
-N(T) = E{l e’ . (79)
The counting rate registered by the detection system is then given by

. AN, -
~01 x Ny = 2L gve (80)

*  The words in parentheses are the author's.
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Let us assume that, at time t, we register C counts in the detection system in a time interval
At << 1. The reason for this assumption is that N be essentially constant during the

detection time. Since detection is a Poisson statistical process which is approximated by a
Gaussian description for C > 10, the fluctuation, AC, in the signal C, is given by yC

which can be considered a source of noise large compared to all other background noise in
our "clean"” laboratory. Thus,

S
X - vC . (81)
We now have
C=0.1xN(o)xAt=0.1§t£ At . (82)

We assume that, in comparison to counting statistics, N, and At are known or measured
with precision. The lifetime, as determined by experiment using equation (82) is given by

AT
Texpt. =ri1:{'1;— %J =TT AT (83)
N
o AC
= 0.1 C Attt C
AC T
At=—F~=— , (84)
¢ Jc
or
AT 1

- =& (85)

This merely tells us that in order to measure the lifetime to, say, a 1 percent precision

At _ 001 =

1
. - (86)
T /C

or
C=104 . (87)

That is, we must detect 104 gamma rays in a time At short compared to 1. Is this

reasonable? Consider that we have a radioactive source with a mean lifetime of, say, one
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week, and a strength of 1.0 pCi. Note, at the Naval Research Laboratory there is a
radiation facility of 60Co with a strength greater than 1000 Ci (lifetime t = 7.56 yr).
A 1.0 uCi source (a typical strength for a laboratory calibration source) emits 3.7 x 104
gamma rays per s. The detector will produce a counting rate of 3.7 x 103/s. Thus, to
achieve the requisite total number of counts, C = 104, will require a At < 3 5. In other
words, with our idealized assumptions,I the mean lifetime of one week was determined to a
one percent precision in a time of 3 s. In a general laboratory situation, N, is not well
known--but the possibility of obtaining a pure macroscopic sample of the isomeric material
violates no known principle. Thus, to determine a lifetime T in a time much less than t
merely requires a source of sufficient but not excessive strength.

The relationship between the mean lifetime, t, of an exponentially decaying
eigenstate and T, the full width at half maximum of the Lorentz-shaped energy spectrum
(Ref. 68) is given by

tT=% . (88)
Note, from equation (82), we have
At 1 _ 1
T & T 3N . (89)
With equation (88), this yields
S 90
AtT Tk (90)

We must emphasize that, in the "uncertainty" relationship, At is the uncertainty or standard
deviation in the measurement of T. It is interesting to note that when C = 1, At = 1. Using

the relationship
I'=fAo , 91
we obtain

AT Ao = =L (92)

which resembles the uncertainty relationship well known in electrical engineering
(Ref. 69), namely,

1 93
AtAcozs/N . (93)
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In this expression, At and Aw are the uncertainties in the simultaneous measurements,
respectively, of the round trip time and frequency of the radar signal. Here, S and N are
the signal energy and the noise power per cycle.

One point remains. Equation (88) merely tells us that a determination of T with a
given percentage error is automatically a measurement of the width of the level with the
same precision; and equation (89) states that if the lifetime is measured in a time interval
short compared to that lifetime, the precision of that measurement depends only on the
strength of the source. None of this mandates a limitation on the time required to narrow
an inhomogeneously broadened level.
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APPENDIX A

SYMMETRY IN SPONTANEOUS DECAY--
BACKGROUND INFORMATION

A.1 BASIC SYMMETRY

A number of algebraic results of the theory of groups is applicable in models of
physical systems in which symmetry plays a role. Examples of such systems are the
structure of molecules, atoms, and nuclei as well as the original classification scheme of
elementary particles. These same aspects of symmetry arise in the enhanced spontaneous
decay theory as presented by Dicke. The notes in this Appendix summarize common ideas
and nomenclature used in group models (Ref. A.1), and are particularly useful in
understanding Dicke's model.

Symmetry arises when something "looks the same”. The Pentagon, if rotated by an
angle of 72° will look the same when viewed by an observer on the outside. Of course,
following the rotation some workers on the inside will also be moved. Let us refer to the
inside workers as degrees of freedom in an internal reference frame. As far as they are
concerned, we could move their assignment to offices 72° in the opposite direction to
compensate for the change.

In general, the movement of rooms, labeled by numbers, and the movement of
people, labeled by letters requires the use of two types of symmetry operations; operations
on the numbers in the number space and operations on the letters in the letter space. We
can denote the letter operator G(af}) where G(of) replaces the letter 8 by the letter . In
general, the letters are @, B, y... although we need only consider & and B for our purposes.
We can further denote the number operator P(ab) where a and b actually take on integer
values. For our purposes there are ultimately many such integer values; say up to 1020.

For illustration we consider the operation on a configuration:




4

Figure A-1. Configurations of Letters and Numbers

The configuration for the Pentagon can be labeled "oty Boat304Bs" but it is clear that as long

as we list the letters in their "bins" in numerical order; we can drop the integral subscripts.
Thus, the previous Pentagon configuration is now labeled afaaa. The hexagon has
configuration afocBp.

A.2. OPERATING IN THE NUMBER SPACE-.-THE PERMUTATION
GROUP
All permutations of the integral numbers can be written as interchanges of the two
numbers, or cycles. Thus, P(12) means interchange the contents of bin one with the
contents of bin two. For the hexagon configuration:

P(12) aBacpp = pacaBp
The new configuration is distinguishable from the old configuration.

In general, the collection of all permutation operators for n objects forms the
permutation group denoted Sy. Even though all permutations can be written as bi-cycles

some can also be written in longer sequences; such as replace one by two, two by five and
five by one, P(125).

P(125) afaofp = Raacf
" In fact, the lengths of the maximum cycles of the permutations in Sy are k, k-1, k-2, ...1.
The permutations are then put into classes labeled by the cycle lengths. For n = 3, there are

classes labeled by [3], [2,1] and [1,1,1] indication cycles of the form (123); (12)(3) and
(1)(2)(3). The cycles can be arranged in graphs of boxes:

A-4




mu. B
(3] (2,1] [1,1,1]

Figure A-2. Box Diagrams of the Classes

The number of classes in a group (here the example treats the group S3) is equal to the
number of irreducible representations, which are now explained.

A configuration, say afff, is an example of a basis function, f;. All of the basis
states (limited to those with one a and two B's) are of§f, Bap and BPa, denoted f;; i =
1,2,3. The space spanned by these basis states (linear combinations of the basis states) is
invariant when the group operators map the space to itself and not outside the space. The
representation of the group gives the result of the operation on a state in the space and is
often written as a matrix, thus:

P(12)(3) ofip = Bap ,

implies that a column vector [100] (where the basis is in the order afp, pof and BPRo)
maps to the vector [010]. Furthermore, it is easy to see:

P(12)f; =1,
P(12)f5 = £
P(12)f; =f3

can be written in matrix form

0
P(12) = 0
1

o - O
O

Figure A-3. Matrix Representation of the Permutation Operator

which is how one might obtain a matrix representation. The invariant space sometimes can
be subdivided into smaller invariant spaces. Such spaces are reducible and so are their
representations. Irreducible spaces and their associated irreducible representations cannot
be further reduced.




The basis states of the irreducible representations can be found from the box
diagram or Young graph by a set of rules. Since the number of classes is eqnal to the
number of irreducible representations, the rules can be well-defined. This marvelous
result, worked out by Young, is accomplished in three steps; construction of the Young
tableau, identification of a starting function, and construction of the state. This is depicted
in Fig. A-4.

1]3
2
(2,11 =
1]2
3

Figure A-4. Young Tableaux for the Case of [2,1] in S3

Step One. Fill the Young graph with the integers 1, 2, ... K such that the
numbers increase across a row and increase down the column.

This irreducible representation will be two-dimensional since there are two Young
tableaux.

Step Two. Construct the starting function by placing the letters a, B, ¥ ... in the
Young graph such that the letters "increase” or "stay the same" across the row and increase
down a column. This is shown in Fig. A-5 for the o, B space [to later be called SU(2)], in
the case of the Young graph of the previous example. There are only two allowed starting
functions; now read off as aaf and affp.

Step Three. Operate with the Young operator on the starting function. This
requires getting a Young operator from a Young tableau. This is done by symmetrizing
across a row followed by anti-symmetrizing down a column. This means writing the
complete operator as the sum of the identity operator and all possible permutation
operations involving the integers in the row with plus signs. Anti-symmeterizing is
accomplished by writing all possible permutation operations looking down a column with
the sign ()¢ where c is the number of bi-cycles that the permutation operation can be
decomposed into. Example operators are shown in Fig. A-6.




] o B B [« BB 1

o o B B Unallowed
aco aap pap BBp gggggns
Bla BB
o o
Boa BBo v
a lo o|B IAllowed
Starting
B B Functions
oo afp

Figure A-5. Unallowed and allowed starting functions for the example of [2,1]

1]2

3 —_— [(D-A3HM)+(12)]
113

5 —_— (D-ADID+(13)]

Figure A-6. Associations of Tableaux and Permutation Operators
(lgnoring Normalization)

Now one operates with the Young operator (obtained from the tableau) on the starting
function (app):

(1) - A3)] (D) + (12)] P = afP + afp ~ Ppa
(1) - (12)] - [(1) + (13)] &BP = PP + ofp - Bof
whereas from the completely symmetric tableau one obtains

afp + ppa + Bop.




For the configuration f2 and the completely antisymmetric tableau, there is no function.
The othonormal irreducible basis states for 2 are summarized in Table A-1.

Table A-1. Classification of Orthonormal States of af2

Symmetric Mixed-symmetric Anti-symmetric
1 1
— [aBB+Bop+BPa] —— [aBB-BBa] No State
3 'F3
lez" [BB-2Bap+BBor]

Thus, we now can fully understand the origin of mixed-symmetry states. The
classification of states having internal degrees of freedom (in the examples o and )
according to the permutation group is important in understanding Dicke's theory of
enhanced spontaneous decay. This section has explained the role of permutation number
symmetry. The internal degrees of freedom o and B are further explained in the next
section.

A.3 UNITARY SYMMETRY

The nature of the unitary groups is important to our understanding of certain
physical quantities of interest--spin, isospin, angular momentum, etc. Now it is of interest
in understanding collective interactions in a field.

A brief "history" helps. The general (complex) linear group in N dimension
denoted GL(N) consists of all non-singular homogeneous linear transformations of the
points in an N-dimensional complex space or, more simply, N x N dimensional matrices
with complex coefficients ajj, i, j = 1, 2, ..., N, and a non-vanishing determinant (so an
inverse exists). The group U(N) is a subgroup of GL(N) where the complex conjugate
transpose of the matrix [uj] is its inverse. The group SU(N) is the subgroup of U(N)
consisting of all matrices having determinant-of-magnitude unity. The group O(N) is an
important subgroup of GL(N), consisting of all real orthogonal transformations in an
N-dimensional real space. O(N) is a direct product of the three-dimensional rotation group
R(3) or SO(3) and the two-element group containing the identity element and the inversion
operator. Each particular group has a number of degrees of freedom ay, a2, ..., @hin h
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parameter space. These parameters lie in a range over closed intervals for SU(N), U(N)
and O(N); thus, these latter groups are "compact”. For a particular point in the parameter
space; say o, ({2 ..., 0tp = O there is a group element A. For another parameter set, o',

there is an element B. Since AB is in the group, there is some mapping f which gives the
parameter set o' of AB in terms of the parameter sets o and o',
o' =f(a,a) . (A-1)
The parameter set of the identity is a©. The existence of an inverse set of
parameters, say &1, requires
of=f(o,at) . (A-2)
Likewise, one may have a function g, such that
oal=g(a,a’) (A-3)

when the functions f and g are well-behaved and possess derivatives to all orders, the
group is said to be a Lie group. This essentially means group elements can be found from
a "Taylor" expansion from some specific element; such as the identity and the group can be
understood "from the infinitesimal" through the use of infinitesimal group generators. The
group generators physically act as quantum mechanical operators.

If a group element A() is near the identity element E(c©) (in this notation we refer
to the group element with its parameters in parentheses) then "o = a© + do" and we can
say,

0 0
Ao+ doc1 sy O +do ) =E+ Gl do, +... + Gh da, . (A-4)

The G's are the generators:
0

limit [A(a?’“"ai*dai’--"ag)-E]
G. =
1 da.—» 0 do .
1 1
- 9A A-5
?&T . ( )
In matrix form:
[au a12} [1 0] da;, da),
= + (A-6)
a21 322 O 1 dazl da22




and the generators are:
[1 o] [o 1] 0 0 0 0

o of [o o o1 [1 o (A7)
We can now consider the effects of symmetry. If we rotate the Pentagon by 72°
clockwise, a specific office now overlooking the Potomac was previously 72° counter-
clockwise and facing more northerly . Mathematically, we can state that the rotation of the

building is related to the inverse rotation of the office assignments:
Af(P)=f(A-1P) . (A-8)
For a matrix A near the identity, the inverse A-1 has components: aij'l =i - dogjj.

Hence, in the two-dimensional case:
A([a 1_]]) f (xl s xz )

f(xy-x,da;;-xyda 5, Xy -x  day; - x5day,)

= f("l”‘z)'("ldall“‘zdalz)g%
= E_.(E+Gijdaij)f . (A-9)
where the generators have the forms: ‘
Gij= % 33— - (a0

the generators G;; equation (A-7) and G;; equation (A-10) have the same group properties.

The set of h generators satisfy:
h
G,G-G,G =Y &G , (A-11)
I=1

where i,j = 1,2,...h, and where clij are structure constants. Thus, we understand the role

of commutation relations.

For SU(N) groups there are n2 — 1 parameters and consequently, n2 -1
generators. Of these, n2 — 1 generators n — 1 are diagonal and can be used to fix
eigenvalues. There are also n — 1 additional diagonal Casimir operators which are

quadratic, cubic, etc., in powers of the generators. The generators are then important for
our purposes. They govern the rates of decay of the Dicke states constructed previously.
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When the generators of a group commute with the Hamiltonian of a system, then all
of the operations of a group commute with the Hamiltonian and the group is a symmetry
group. The diagonal generators are then operators corresponding to conserved physical
quantities. Invariant operators will also commute with the Hamiltonian of a system; and the
states of the system have well-defined eigenvalues of these operators. Moreover, the states
of the system are then states of the irreducible representations.

The eigenvalues of the diagonal generators for the states of the defining
representation can be used to construct a vector m in space whose coordinates are the
eigenvalues of the diagonal generators. This vector is the "weight vector." The "root
vectors" are the differences in the weight vectors. The diagram of states of irreducible
representation is referred to as a weight diagram; and generators pictorially shift from point
to point on the weight diagram. These pictorial concepts are useful in visualizing the group
structure and symmetry of physical systems. We use them in the main section of this
paper.

The group SU(2) has three generators which we call jx, jy, and j,. Their matrix
form is well known (Pauli matrices) and the Casimir invariant is g Ji + Jf, +1] 5 . The
eigenvalue of Jz is called m, and the eigenvalue of 12 is J(J + 1). The fundamental weight
diagran; is one dimensional since there is only one diagonal generator, Jz. The
fundamental basis states are usually labeled o and B, having Jz eigenvalues of +1/2 and
—1/2, respectively.

From the matrix representation for the SU(2) group the SU(2) algebra is (well
known to pedestrians):
HFt=Ix+ XJy, I = Jx - l.Iy
Uz, F1=+J*
Uz, JF1==J- . (A-12)
The most significant aspect of the background group theory in this Appendix
pertinent to understanding Dicke's theory of enhanced spontaneous decay is the
classification of many-particle states simultaneously according to the permutation group of
k objects and according to the unitary group in n-dimensions. This is most conveniently

accomplished for our purposes here through the use of the Young techniques. The SU(N)
symmetry is indicated by the upper-left superscript in the Young box, as shown below:
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for SU(2)
3
for SU(3)
(A-13)
N
for SUNN)

A single box represents a "single particle” and, as used previously, it is convenient
to introduce Greek labels. Thus, for SU(2) we use o, . In Dicke's theory o and f refer
to excitation states in a single two-level particle system. The wave functions of the many-
particle states are found by the direci (outer) product:

2 2 2
® ® etc. (A-14)

For k particles, the resultant tableaux would extend to k boxes in height, except for
the fact that no more than N internal states can be anti-symmetrized in a vertical column.
Because of this constraint, the tableau are always restricted to N rows for UN). For
classification according to SU(N), where the total number of boxes is unimportant,
“closed" columns are conveniently dropped.

The simultaneous classification of k = 5 objects according to S5 and two-level a
and B excitations according to SU(2) is depicted in the following example. The group Ss
has 7 classes, of which only three are allowed in SU(2). They are [5], [4,1], and [3,2].
The four classes not allowed have more than two columns. The class [5] has only one
tableau, but it has six starting functions. They are aaooa, cooof, coafBB, acBpf,
o.BBBB, and BRPRPR. Continuing in this manner, the classification scheme depicted in
Fig. A-7 emerges.

The expressions for degeneracies are discussed in the main text; and here we show
the degeneracies as found using the numbering of the Young graph. The mixed symmetry
states depicted here are associated with higher dimensional, irreducible representations.
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SU(2) Symmetry (r and m labels)
m r=5/2 r=3/2 r=1/2
¢ 52 T—re —>e

+3/2 _—
+1/2 _—
-12 —_
=312 —_—
-52 —_

[5] [4,1] [3,2]

O11T1] 11 2

-

SsSymmetry (tableaux)

Figure A-7. The Simultaneous Classification of States of S5 XSU(2) and
Associated Quantum Numbers are Depicted Here for Five Particles.
Although the wave functions are rather tedious to express, they can be found using

the Young operator on the starting function. We emphaéize the Young technique since it is
easy to visualize for higher N, in preference to the Clebsch-Gordon approach. As long as
the quantum numbers remain "good quantum numbers" there is no need to know the states
explicitly. For more than two-level systems, in SU(N), the coupling coefficients are
needed and one way is to know the states according to the differing group chains. The four
functions thus found for the [4,1] symmetry will be found to be linearly independent,
which is sufficient to span the entire invariant space, but they will not, in general, be
orthogonal. Thus, it is assumed that normalization is achieved at will, and the equivalent
Gramm-Schmidt orthogonalization may be needed in practice.
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APPENDIX B

INTRODUCTION TO ENHANCED SPONTANEOUS
DECAY THEORY

B.1 INTRODUCTION TO THE DICKE SUPERRADIANT THEORY

This appendix provides a brief introduction to aspects of Dicke superradiance used
in modeling pulse characteristics. The original symmetry approach of Dicke is then
pursued.

B.2 COHERENCE IN SPONTANEOUS RADIATION PROCESSES

Dicke's theory of superradiant emission is a theory of coherence in spontaneous
radiation processes. The underlying assumption or "observation” of the theory is that all
molecules (emitters) are interacting with a common radiation field and hence, cannot be
treated as independent quantum mechanical processes. For non-overlapping spatial
wavefunctions, particle symmetry plays a role with respect to the common radiation field.

The example of two two-level particles illustrates the main point. A proton in a
uniform magnetic field has two states: one with spin component mg = + 1/2 denoted | o>
and one with spin component mg = - 1/2 denoted | B >:

la> mg=+112 Spin-1/2 Multiplet
B> mg=-—1/2 (B-1)

For two such protons (labeled #1 and #2), there are four states:

oy

2-12(0u By + Bra) 212 0By - Brp)

B1B2 (B-2)
Triplet (superradiant) Singlet (subradiant)




The state a1 has a 50 percent probability of decaying to B1B2 since it is a linear
superposition of the mg = 0 singlet and triplet states. As far as emission is concerned, the
triplet state is "superradiant” and the singlet state is "subradiant”.

So.ne assumptions pertain to particles physically treated as "gaseous." The gaseous
system as a whole is considered to be treated as one quantum mechanical system, and
Dicke makes five assumptions concerning the radiating "molecules."

(1) The gas dimensions are assumed to be small with respect to a radiation
wavelength

(2) The walls of the container are transparent to the radiation field
(3) Collisions do not affect internal states of molecules
(4) Transitions take place between two non-degenerate states of the molecule

(5) There is insufficient overlap in wavefunctions of separate particles, requiring
that wavefunctions be symmetrized.

The Hamiltonian for the two-level system is obtained as follows. First some
definitions:

E = ho =excitation energy
H, = Hamiltonian; acts on center of mass coordinates
n = number of particles
j, 1 = particular particles
Rj3 = an operator with eigenvalue + 1/2 if the particle is excited, — 1/2 if not
excited
Then the Hamiltonian is given by:
H=H,+E ) R, , (B-3)
j=1,n

where
[Rj3, Hol = [Rj3, Rj3] = 0 .
A typical total system wavefunction for an energy eigenstate is
Yom=Ug(ry...r)[++-+...1, B-4)




where the first factor U is a function of center of mass coordinates and the second factor
gives the signs of the internal energies of the emitters. For n_ particles in the excited state,
and n_ in the unexcited state,

n=n,+n.
m=12m,-n.) B-5)
and
Egm=Eg+mE .
The degeneracy of the states having energy Egn, is
n/[@2+m)!W2-m)!] . (B-6)

This is an important factor that warrants further study since it will predict diminishing
superradiance if less than complete inversion is achieved.

Two other operators are of importance in addition to R;3 and H,,. They are R;; and

Rjp- The three R; operators are the three infinitesimal generators of a group with SU(2)

algebraic structure:
Rjpl...x...1=12[...-/+...]
Rip[...£...1=%12i[...~+...]
Rp[...x...]=%12[...%£...]. B-7)
For all n particles:
R=Y R, k=123 : (B-8)
j=1,n
and the well known quadratic Casimir invariant of SU(2) is
RZ=R}+R +R; . (B-9)
Finally,
H =H, + ER; (B-10)
R3¥m = m¥em - (B-11)




B.3 INTERACTIONS WITH THE ELECTROMAGNETIC FIELD

That the interaction term of the particles with the electromagnetic field can be written
in terms of the SU(2) generators is important in Dicke's theory. The interaction term is
written as:

H =-AG): D, ep/me (B-12)
k=1, N-1

where
rj = center of mass position of the jth particle
ek, My = charge and mass of the kth particle
Pk is an odd operator with off-diagonal elements
The general form of the interaction terms is
—A () (e Ry +e2Ryp) , (B-13)

where e and e are constant real vectors; the same for all particles. Then the general form
of Hy is

Hy=-Z;A () (e Rjp +e;Ryp) . : (B-14)
In a small gas sample,
Hyj=-2;A0) (e;Ry+e2Rp) (B-15)

where A(0) is evaluated at the center of mass. The small sample size eliminates effects of
the center of mass coordinates. Assuming Ag = 0 (g could be a motion quantum number,

for example) eliminates Doppler broadening of the transition frequency.

The operator Hy has selection rules Am = £ 1. R and Rj account for transitions
having Am = £+ 1. Rj is a diagonal operator. Since H and R2 commute, and since the
Casimir operator R2 has eigenvalue r (r + 1) it is convenient to introduce r as the
"cooperation number”. Thus, lm |<r<n2.

‘¥gmr denotes the new eigenstates of r,
H¥ym = (Eg + mE) ¥y (B-16)
R2¥ =1 (r+ )¥py | (B-17)
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The operators of SU(2) are related to the permutation group Sz of symmetry
operations of the one-dimensional simplex. Thus, all weight diagrams will be lengths of
one-dimensional lattice points. The highest weight state is denoted Wg /2, o2 and used to
get the lower states

Worr =¥, w2, 2 =Ug [+ ..4]

Yo = [R*-R; -R)™ R ~iR )" ¥, (B-18)
where the multiplicative factor obtained in "lowering" is described in most presentations on
angular momentum theory. The matrix element:

(g, r,m |e1R1 +e3R, | grm-—/+1) =
172 (ey tiey) [t m)r —/+ m+ D]V2 | (B-19)
Thus, spontaneous radiation probabilities are given by
[=,+m)(r-m+1) . (B-20)
For example, the decay rate for one excited particle is
m=r=12 I=1,(A2+12)0+1)=1, . B-21)
For n initially excited particles
I=nl, . | (B-22)
For n particles, where r is large [mlis small; r = n/2, m = 0 (zero population inversion)
and
I=T,w2)(w2+1) . (B-23)
This is the largest rate at which a gas with an even number of particles can radiate
spontaneously. In summary, the characteristics of the enhanced spontaneous decay are
(1) TaN2
(2) An (population inversion) is zero

(3) with large values of r radiate more strongly than multiplets with smaller values
ofr

Note that n particles, where r = m = 0, never radiate.

A gas which is radiating strongly because of coherence is called "superradiant.”
Some ways to make a superradiant state are the following:
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“

o
(1) Excite all molecules to r = m = n/2 and wait for decay to the "superradiant
region” given by m ~ 0.
(2) Start in the ground state: r = -m = n/2 and irradiate with a sufficiently intense ®
pulse to the state where m ~ 0.
Effects of thermal equilibrium provide for randomness in the initial state, which can
be calculated using standard statistical mechanics techniques. At high temperature, it is °
found that r = m = -nE/4kT . Following an irradiating pulse to excited states with m ~ 0 the
radiation rate is
I~ Iyr(r+1) ~ Ign2 (E/4KT)2 . (B-24)
Finally, for any temperature, Dicke shows ®
I = (1/4) Iy n(n-1) tanh2(E/2kT) +nly /2 . (B-25)
B.4 CLASSICAL MODELS
®
For large r we can consider classical models of Dicke superradiance. This approach
appears to provide convenient analytical solutions. Figure B-1 summarizes the
coordinates.
. ®
z-axis
m=|ricos ¢ °
¢
Irl
o
Figure B-1. Polar coordinate system used in the classical model.
®
The component m is approximately m = r cos@. With this substitution, the
radiation rate becomes I = I, r2 sin2¢ (ignoring linear terms in r). The internal energy of
the gas is
mE = rE cos¢ = Et . (B-26) ®
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dE1/dt = —E sin¢ (d¢/dt) .
Using 11y |= |dE/dt |,
I 2 sin%¢ = r E sin ¢ (d¢/dt)
or
(do/dt) =y /E)sind=asind .
For ¢ = 90°, m = 0 and sin® = sech (at). The form of the radiated wave is
A(t) =ei®tsind,t>0 .
The Fourier transform is
FP) = 2)1/2 (o 1) sech [ & (B-0)2a]
which is a non-Lorentzian pulse shape. The width at half-intensity is
Aw=1.12vyr .

(B-27)

(B-28)

(B-29)

(B-30)

(B-31)

(B-32)

Here, v is the linewidth for isolated single particles. For the case of maximumr,

Aw=1.12yn/2 .

B.5 A GAS OF LARGE EXTENT

This case considers:

(B-33)

(1) A gas which occupies a region having dimensions larger than the radiation

wavelength (for 50 keV, 1 = 6 x 10710 cm or 0.06 A)

(2) A gas region small with respect to the reciprocal of the natural linewidth. (For
t=1s. I is approximately 10-17 eV; thus, 1/Ak is approximately 10~11

cm.)

For this case, coherence is considered for a fixed direction k, and now the R
operators of the SU(2) symmetry are labeled by k. Thus, correlated states of the gas for
which radiation propagated in the k direction is coherent are described by ‘¥'m, for
direction k. A photon of momentum k arises from transitioas having Ar =0, Am =% 1:
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I(k) = Io(k) (r+m) (r-m+1)
r-b (B-34)
2t
On the other hand, where k = k', the selection rules are
Ar=%10;Am=%1 . (B-35)
In summary:
(1) Incident radiation is assumed to be plane with a propagation vector k
(2) The gas radiates in the k direction

(3) Radiations in directions other than k tend to destroy the coherence with respect
to the direction k by causing transitions to states of lower r.

B.6 DOPPLER EFFECTS

Since H,, and Ry 2 do not commute, the eigenstates are not stationary. Physically,
there is relative motion between the oscillators, as depicted in Fig. B-2:

_— O field with
p(+) = hs no photons
— O emits in field
p(-) = h(s-k) of photon of

momentum Kk

Fiéure B-2. When Recoil Effects Must be Included, the Emitters Emit Photons
of Momentum k with Momentum Changes Reflected by a Change in the
Deexcited Emitter's Velocity (in the Simplest Form of Dicke's Theory).

Now the appropriate states are written as:
W gr = exp(is 2 1) [H++.. . 4], (B-36)
Wsmr = [(Ri? - Ry3? = Ry3) 12 Ry = iRg) )™ ¥y (B-37)

These latter coherent states are superpositions of states such that the excited particles have
one momentum and the unexcited have another (recoil then prescrves the coherence).
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B.7 PULSE-INDUCED COHERENT RADIATION

In this case the radiation field is turned on for a short period of time. The system
evolves in a complicated manner as discussed in Chapter II. The emitted pulse is highly
anisotropic and dependent on the duration of the pumping.

Further routes of investigation include the study of correlation of successive
photons. For an inter-particle spacing large compared with a radiation wavelength, the
radiation rate averaged over all directions is the incoherent rate.

B.8 SEMICLASSICAL SUPERRADIANCE

The Feynman, Vernon, and Hellwarth (FVH) representation provides a convenient
pictorial framework for understanding superradiant emission in a standard semiclassical
approach. Further details of the treatment of transitions in two-level systems in the FVH
approach are discussed in Appendix C.
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APPENDIX C

BRIEF OVERVIEW OF SEMICLASSICAL APPROXIMATIONS
TO THE GROUP THEORETICAL APPROACH
TO SUPERRADIANCE

C.1 THE FEYNMAN, VERNON, HELLWARTH REPRESENTATION OF
TRANSITIONS IN TWO-LEVEL SYSTEMS

The Feynman, Vemon, Hellwarth (FVH) representation provides for an alternate
description of superradiance employing a semiclassical description of the radiation field.
The theory of vectorial precession in three-dimensional space according to the group O(3)
is, not surprisingly, equivalent to a quantum approach based on SU(2) since SU(2) is
homomorphic onto O(3). The level scheme is the same two-level system discussed
throughout the text, and the vector r, its z component m, and the angle ¢ are depicted in
Fig. B-1 of the previous Appendix.

Quite simply, in the FVH approach,

H¥ =ihd¥/ot , (C-1)
where
H=Hy+ V(@) . (C-2)
Let
P(t) = a(t) uy + b(t) up > (C-3)

where u, and uy denote excited and deexcited basis states.

Here, a(t) and b(t) have real and imaginary parts. One component (of the four) is
the absolute phase of y(t). The three-component Bloch vector is:

r=(r1,r2,13) , (C-4)

where
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r; = ab* + ba* ,

ry = i(ab* — ba*) ,
and

ry = aa* - bb* - (C-5)
The following definitions apply:

®1 = (Vap+ Vpa) / h

W2 =i(Vap—Vpa)/h
W3=0 . (C-6)

Here V,p and Vp, are matrix elements of the potential V describing the
electromagnetic transition:

V=-12@*E-+p-EY . (C-T)
Using all of the previous equations, it is easy to show that the equation of motion is
dridt=wxr , (C-8)

Its solution is well known.

C.2 SUPERRADIANCE IN THE VECTOR MODEL

Superradiance in the vector model is described in many elementary texts. The
superradiant state arises from a ®/2 pulse, as briefly summarized here. The transition
energy is assumed to befiew where w is the resonant frequency. Initially, all of the emitters
in the system are in the state up ; thus, rr(0) = —1 ayy where ayjp is the z direction in an
internal rotating reference frame (rotating at frequency w). For a time t,, the field is turned
on such that loy lty = /2. Here, the frequency wy = —2UE/h corresponds to the interaction
of the transition dipole U with the field E and in the usual picture the vector ® = wy a.
According to the dynamics of the vector r discussed in section C.1, the vector is brought to
the position depicted in Fig. C-1. When the field is turned off at ey lto = 772, the system
is "midway" between the upper and lower states--this is the largest transition dipole
moment; la 2 = b 2 and the projection on ayy is zero.




z-axis

r-vector

/2
pulse

Figure C-1. The superradiant state is achieved from the ground state by a
90-degree exciting puise leading to 50 percent population inversion. This
state of maximum dipole moment radiates at the maximum rate described
by the dynamical equation summarized in Section C.1. The FVH approach
is thus an "0O(3)" vector model achieving similiar dynamics as
Dicke's original "SU(2)" theory.

In this particular superradiant state the particles are contributing coherently to a
single giant dipole moment. The decay of this state is characterized from the increased
radiation rate that characterizes the spontaneous decay of the giant dipole, that is the rate of
fall of the r vector. There is no explicit reliance on the r "cooperation” quantum number
other than its association with the length of the r vector. Also, no more than one state
having N = Np is distinguished, in contrast to N such states in Dicke's quantum
formulation. Specific applications of the semiclassical model are discussed in the main text
in more detail, where various pulse characteristics are discussed.
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APPENDIX D

RESONANCES IN THE APPROXIMATE
BONIFACIO-LUGIATO MODEL

This appendix outlines an analytical approach to the solution of the approximate
equations for the general, non-Markovian, B-L model for superradiance when
inhomogeneous line broadening is neglected. The method is that used in Ref. D.1 to
calculate the atomic inversion and emitted radiation according to the earlier Markovian
model introduced in Ref. D.2.

In Ref. D-3 B&L derived the approximate equations

t
p(m,t) = — % J.ds e K(-9)
(o]

{g(m) p(m,s) — g(m+1) p(m+1,s) + [g(m) + g(m+1)]N (m,s)
- g(m+1)N (m+1,s) — g(m)N (m-1,8)} ,

t
N(@m,t) = = 2KN (m,t) + % Ids eK(t-s)
[+]

{g(m+1) [p(m+1,s) + N (m+1,s) - N (m,s)]} , (D-1)
where
N N . N N
g(m)={(2 +m) (5-m+l), - 5 <m <5 D-2)
0, otherwise,

for the occupation probabilities p(m,t) of the atomic Dicke states | r,m> and the
corresponding photon expectation values N(m,t) of the radiating electromagnetic field,
given a particular value (N/2)(N/2 + 1) for the atomic cooperaticn eigenvalue. In equations
D-1, in the form given here, the "inhomogeneous broadening" decay time T; is assumed to
be infinite, although in Ref. D.3 it is included as part of both integrands on the right hand
side of the equations. Also in equation (D-1) time is measured in units of the cooperation
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time 1¢ and K is a corresponding dimensionless parameter equal to the product of T with
the reciprocal photon propagation time parameter originally designed as K in Ref. D.3.
Thus, here

K = ¢ Koriginal .

Along with equation (D-1) the standard initial conditions

N (@m0)=0;
{0
p(mio) = 0, m < E ’ (D'3)

2

are assumed. These conditions imply that initially all N atoms are excited and the photon
field is in the vacuum state. Together with equations (D-1) they imply that N(N/2, t) = 0.
With neglect of T;,_ , the solution of equation D-1 can be found by means of the

Laplace transform. Thus, setting p(m,z) and N(m,z) for the Laplace transforms of p(m,t)
and N(m,t), equations (D-1) is equivalent to

4 — —
(Z+2K+ z+K)N(%I' -l,z)-z—fi'—Kp(%, z) =0,

4

L N o R SO SRR

for the highest m values and
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(z+2K+ m-)N(m-l,z) -m- p(m,z) = 7T K N (m,z) ,

"R V@ LD +(z+ o) Pm - - (BERE Y N @ 10

Tm+1 —mo Ym+1
ok Ym+1,2) - g pm+ 1, 2) (D-4)

for the rest, where

_ 4g(m)
Ym - N . (D‘S)

The quantities N(m-1, z) are naturally matched with the quantities p(m,z) in
equation (D-4) in recursive pairs, the quantity N(N/2,t) already having been found to be
zero identically. The determinant, Det(z), of the matrix on the left side of equation (D-4) is
given by

Y Y T2
Det(z) = (z+2K + L) (z+ —8) - =22+2Kz+2Yy, . (D-6)
z+K z+K (Z + K) 2

Accordingly, the inverse matrix, which can be used to solve the equation (D-4), is given by

pa ——

2+ Kz+7v, Yo
DET(z) > DET(z)

A = 2 . (D'7)
Ym 22+ 3Kz +2K" v,

| DET() ’ DET()

The zeroes of Det(z) determine whether the solution pair N(m,t) and p(m,t) for a
given value of m oscillate with a natural frequency that does not depend on the right side of
equation (D-4). If the zeroes are both real, those quantities do not have a natural oscillation
frequency; if the zeroes are complex (in which case they occur in conjugate pairs) they have
a natural oscillation frequency  given, except for sign which is conventionally positive, by

the imaginary part of either zero.

The zeroes are given by

z=-K+JK -2y =-K2 /K2_§§ISI£) . D-8)
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The condition for a natural oscillation frequency corresponding to a given m is therefore

K<2 /3%“—) . (D-9)

The definition of the g(m), along with (D-8), together imply that ringing occurs in
the system if and only if

K<242

This is a more precise condition for the existence of a non-Markovian stimulation effect
than the Ref. D.3 condition, which in terms of the present notation would be K ~ 1.

If oscillation at a natural frequency ® occurs for some value m' of m, then, since

the corresponding N(m'-1,t) and p(m',t) will contribute to the source in the equations for
N(m'-2,t) and p(m'-1,t), those quantities will also oscillate with a component having the
frequency ®. Thus, if there is a natural frequency again equal to ® for some m < m/, the

corresponding N(m-1,t), p(m,t) will exhibit resonant vibrations.

It is evident from (D-8) that this can occur if and only if

g(m’) = g(m)
Since
g(3-1) = (D M1,
s@ 1) = (& -v)
if and only if
N=p+v+1.

[t follows that for any N > 1 and any v such that0 <v <N - 1,
N N
g(?-v) = g(v+1-—2—) . (D-10)
It follows from equation (D-10) that, if a natural frequency occurs for some value

of m given by N/2 — v or v + 1 - N/2, resonance must occur for some lower value uniess

N_u= N D-11
5 v=v+1 5 - ( )

The condition (D-11) is equivalent to
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N=2v+1 , (D-12)
P so that to avoid resonance and still have oscillation, N must be odd.

Also, on comparing equation (D-10) with (D-12), it is found that this can only
occur when m = 1/2, for which value

_gely o (N£1)2
h. 8(“1)—8(-2-)— ( 2 )
Then, the natural frequency oscillation condition equation (D-9) becomes
K<N+1) /%—~J2N : (D-13)
=
To avoid resonance due to the natural frequency for a larger value of m, the condition
3
. 2) N+3)(N-1) )
K>2 N = 2 N (D-14)

In summary, the only case in which there is some oscillation of the system but no
resonance occurs is when

2IN+3)(N-D 2
\/ N <K<(N+1)‘/—§ . (D-15)

The case of N = 2 provides an example for which the explicit analytical results are
reasonably simple. On applying the matrix inverse equation (A-7) to equation (A-4) and
inverting the Laplace transforms obtained thereby, the following solutions are obtained:

NAt=0,p(, t)—--—-—2 e'K‘[l—cos(\IS—Kz t+ ¢>ﬂ ,
§-K

where

2 2
KV8-K° o K-=4.

4 ’ 4
N(O,t)=——i4—7¢_kt[l—cosw/8—K2 t] ;

N(E-1Lt) = —=— 32 kt[l—cosJS— tsm‘/8 K? }

@8 -K»?

sin ¢ =
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2 /
P(Ost) = '1(8_ N (—190 +—_—— [ =—=_sinv8- K

@8- K)
8 KZ > (8 K2)3/2
—-—2—tcosx/8-K t+——— tsinv 8 — K>
P =1H=1-pOy-py . (D-16)

The last equation comes from the conservation of probability

Z pmt =1,

which follows identically from the equation (D-1) and the assumed initial conditions.

Figures D-1(a) through (e) give some calculated results from equation (D-16).
These results compare well with the calculations obtained using Code SR 2 for the same
input parameters.”

*  Ringing will occur because of at least one value of m, namely m = 0, when K is of the order of N or
less. To get ringing for all m values K < 22 is the necessary condition.
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APPENDIX E

THE CODE SR1.FOR

The diffusion equation derived by Narducci et al. (Ref. E.1) for the atomic density
operator is a differential equation for the so-called quasi-probability function that
determines the density operator. The atomic density operator determines the time evolution
of any statistical property of the ensemble of two-level atoms satisfying the conditions of
superradiance as specified by Bonifacio and Lugiato (Refs. E.2 and E.3).

Specifically, this includes the expectation value of any operator that has a known
representation in terms of the fundamental basis vectors used by the authors, namely, the
Bloch states defined by Arrechi and Courtens and by Radcliffe (Refs. E.4 and E.5). Itis
also a straightforward matter to express the results in terms of the Dicke states.

Because the underlying model assumes that the atomic system emits photons
"adiabatically"”, Bonifa_cio and Lugiato were able to derive a relation between the
expectation of the electromagnetic photon number operator and the expectation of the
atomic polarization operators. Thus, the atomic density operator will also give the time-
dependent spontaneous radiation statistics of the atomic system.

The quantity of interest is a function Q(6, t), which satisfies the differential

equation

Cecin® - sin 6
a% Q@Y = - 5% [[ rsin @ 2(1 + cos 6) O, t)ﬂ

2 -
i [LCT"S-Q Qe®, t)} . (E-1)
20

The density operator W A(t) is defined by




1

Wa (1) = j de Q@ .,t) AO) , (E-2)
o
where
2 [, 2(2r - m) | 2m
A(e) = Z [n:] (COS ‘21‘ 9] [Sll’l 'é— 9) ‘I‘, m><n, ml . (E-3)

m=
The vectors | r,m > are Dicke states with quantum numbers r,m representing the
cooperation number and the internal energy of the atoms. The sum in the expression for A
is finite for any given value of r; therefore, the representation in terms of Dicke states is not
significantly more complicated numerically than the original representation in terms of
Bloch states.

We want to find an expression for
e[ RRW,0] (E-4)
where the raising and lowering operators R* and R~ satisfy

R np>=[Qr-p)(p+ 1)]1/2 [Lp+1> and

172
R7|r,p>=[@r-p+1)p]  |rp-1>p=0,1,..,2r.

Since

tr(|r,p><r,p|)=1
and

R'R- |r,p>=(2r-—p+1)p|r,p>,r=0, 1, .., 2r
it follows that

+ 2L 21‘ 2 2r—p .2 P
[wR R A®]= ) |p | {icos? @21 © } [Gin® @2)] @r-p+1)p
p=0

From formulas for the mean and variance, respectively of the binomial distribution

one has that

2r
2 2r -
Z[pr)u-x)‘ "' p = 2nx

p=0
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and
2r
21' 2r—p P
Z{p](l-x) X 2r-p)p=2rQ2r-1)x(l -x)
p=o

Setting x = sin2(8/2) and consequently 1 — x = cos2 (6/2) one has that

w[RFRA@©)] = 2r @r- 1) sin® [0 /2) [1 - sin2(8/2)] + 2rsin? (@ /2)

using the fact that 2r—p+ 1)p=(Q2r-p)p +p.
This gives

w [R* R W, ©] =2r2e- 1) [ 48 Q@ 0 sin2(0/2) cos?(8/2)
(o]

T
+2r [ 48 Q@ . sin2(8/2)
(o)

with the definition Q(0,t) = (sinB) p(0,t). Using 2 sin(6/2) cos(6/2) = sinb,

o [RYRWa 0] =r@-12) [ 6 Q@ sin®8
(o]

T
£ [d Qe sin? (9/2) . (E-5)
(o]

This last expression is coded in SA1.FOR, which produces numerically the time
evolution of Q(0,t) for0<B<mandt=0.

Narducci et al. (Ref. E.1) have given the general solution of the diffusion equation
for Q(6,t) in terms of an arbitrary initial condition. They have also given a simplified
approximation for the case in which the initial value implies zero probability within some
neighborhood about the state of total population inversion initially. The point of total
population inversion on the Bloch sphere is a singular point of Q(6,t); thus, if the initial
condition does not exclude that point, the form of Q(8,t) is more complicated than it would

otherwise be.

The initial condition on Q(6,0), 0 <6 < 2x in our calculations is given by




2 2
Q(9,0)=e'(e'“) S o0<e>n

for various choices of the standard deviation 6. For a given positive integer n, the unit
circle is broken into n pieces by means of the points 04, ..., O, with

0j =4 + 280D 5o, .

This avoids having the singular point 8 = w as a member of the grid.

Differential equation (1) is replaced by a finite difference scheme. In the following,
ta represents an "old" time at which values of Q are presumed known; and t, represents a
"new" time at which values of Q are to be calculated:

th-ta

sin 61, + o oit] 410 ) A0 ta)
#1720 ¢ cos 0i+1) 2
sme s
rsin 6; 4 ——-3i— Q(ej’tb)+Q(eJ ta)
J 2(1+cose :)

t-cos 0,1  X0js1rtp) + By, ta)

M 2 2
L I-COSGj Q(Gj,tb) +Q(9j,ta)
2 2
1‘COSG~ Q(e-l )tb) "'Q(O '-l’ta)
+ J-l ) ! ,J=1, »

2 2




Considering Q(6j, ta), j = 1, ..., n as known, values of Q(6j, tp) are calculated.

This process is repeated for
(taty)=[AD* &-D,AD*K)] ,k=1,..,m |

where M * AT is the final time.

This procedure is essentially a Crank-Nicholson scheme adapted to this singular
partial differential equation.




PARTIAL PARAMETER LIST FOR SR1.FOR

N = number of pieces into which the interval [O, 2] is broken. Values from 2000
to 20,000 are appropriate. Multiple runs with different values of N should be
made as a check on accuracy.

D= time-step length
T = final ime
R = population size
SIGMA = standard deviation for initial distribution
I'= number of time steps skipped before data is retained for graphing

Generally, the larger the sample size R is, the smaller T and D must be. Roughly, a
doubling of R implies that T and D should be cut in half.
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c

000000 00

80

c
c

SR1 SUPERRADIANCE CODE 1

PROGRAM SR1.FOR - 13 AUGUST 1986 - J. NEUBERGER
DOUBLE PRECISION P0(40000),R0(40000),S0(40000),Z(40000)
DOUBLE PREC:SION P(40000), R(40000),S(40000),U(40000)
DOUBLE PRECISION WT(40000),WA(1000),Y(40000),W(40000)
DIMENSION ASC(1000),SWA(1000)
DOUBLE PRECISION P1,S1GMA,D,T,R1,X1,D2,01,Q,Q0,T1,X,XX,F
COMMON P1,S:GMA
OPEN(1,FILE=’SR1.PLT’,STATUS=’NEW)
OPEN(2,FILE="SR1.DAT’ ,STATUS="NEW” )
‘N’ MAY BE CHANGED TO 10000, 20000 OR 40000 AS A CHECK
‘N’ 1S THE NUMBER OF PIECES INTO WHICH THE CIRCLE.IS BROKEN
N=5000
THE FOLLOWING ARE TO BE INPUT EACH TIME THE CODE IS RUN:
D=sTIME STEP SIZE (.00000100 IS A TYPICAL SIZE FOR N = 20000.D0)
TF = FINAL TIME (TF = .000100 IS TYPICAL FOR N = 20000.00)
11=NO. TIME STEPS SKIPPED BEFORE DATA IS RECORDED (I1 = 1 IS TYPICAL)
N = NUMBER OF ATOMS IN MODEL (FROM 1. TO 10.%%6 OR MORE)
SIGMA IS THE STANDARD DEVIATION IN THE INITIAL GAUSSIAN DISTRIBUTION
WRITE(*,%*) ‘INPUT D,TF,I1,N,SIGMA -
READ(*,*) D,T,I1,R1,SIGMA
WRITE(2,80) 0,T,I1,R1,SIGMA
FORMAT(1X,’ D=’ ,010.3,° TF=’,010.3,’ I1=’,13,’ N= *
. ,D10.3,° SIGMA=’,010.3) .
TO COMPARE WITH OTHER CODES IN THE SERIES, ‘K’ AND ’‘T2-STAR’ ARE
HERE CONSDIERED INFINITE; TIME SCALE IS TC=(1/G0)*(U/N)%*.S
1S=1SK
1Ss=1I1
P1=3.1415926535900
X1 = 2.D0%P1
M1=INT(T/D+.1)
02=0/2.00
D1=2.D0%P1/FLOAT(N)
Q=D2/D1**2
Q0=D2/(2.00%D1)
NM1=N-1
NM2=N=2
DO 120 I=1,N
Ti=D1*FLOAT(1)=-D1/2.00
WT(I) = R1%((R1-.SD0)*DSIN(T1)**2 + 2.D0*DSIN(T1/2.D0)%*2)
S0(1)=Q*(1.00~DCOS(T1+D1))/2.00
. +Q0*DSINCT1+D01)*(R1+.500/(1.D0+DCOS(T1+D1)))
RO(I)==-Q*(1.D0-DCOS(T1))

120 PO(I)=Q*x(1.00~DC0OS(T1-D1))/2.00

. -QO*DSIN(T1-D1)*(R1+.500/(1.00+DCOS(T1-D1)))
0O 130 I=1,N
S(1)==80(1)
R(I)=1.D0=-RO(CI)
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130 P(I)=-PO(I)
00 143 I=1,N
U(I)=0.D0
140 W(1)=3.D0
U(1)=3(1)
U(N-1)=S(N-1)
UCN) =R(N)
W(1)=S(N)
W(N=1)=P(N)
00 213 I=2,NM2
RCI)=R(I)=S(I-1)%*P(I)/R(I-1)
UCT)=u(1)=U(I=1)%P(1)/RC¢I-1)
WCI)m( 1) =S(I-1)*W(I-1)/R(I~1)
210 UCNY =UCN) =U(T=-1)%(I=1)/R(I~1)
UCN) =UCN) =W (N=1)%*U(N-1)/R(N~1)
00 230 I=1,N
230 Z(1)=F(D1*FLOAT(1)-01/2.00)
DO 1000 M=1,M1
IF(((M=1)/11)%I1.LT.M-1) GOTO 330
M9 = M/I1
X=0 .00
XX=0.20
0O 312 I=1,N
IF (ABS(Z(I1)).LT.0.1D-10) Z(I) = 0.D0

c XX=XX+Z(1) :
c WRITE(S,%) 1,Z(1),WT(I)
312 XaX+Z(I)*NT (1)

WA (M) =X%xP1l/FLOAT(N)
c XX=XX/FLOAT(N)
c WRITE(6,35) M9I,XX,WA(MI)
S3S FORMAT(1X,14,2016.6)
< WRITE(6,%*) (Z(1), I=1,N)
330 CONTINUE

IF(M.EQ.M1) GOTO 1000
Y(1)=Z(1)+S0(1)*Z(2)+RO(1)*Z(1)+PO(1)I*Z(N)
00 350 I=g,NM1

3350 YCI)SZ(I)$SOCI Y *Z(I+1)+ROCI)I*Z(IH)+PO(II*Z(I~1)
Y(N)=SZ(N)+SO(N)*Z(L)FRO(NIXZ(N)+PO(NI*Z(N=-1)
00 400 I=2,NM1
YCI)sY (L) =Y(I=1)*P(I)/R(I-1)

400 Y(N)aY(N)=Y(I=1)%W(I=-1)/R(I-1)
Y(N) =Y (N) =W (N=1)%Y(N=1)/R(N=1)
Z(N)=Y(N)/U(N)
Z(N=1)=(Y(N=1)=U(N=1)*Z(N))/R(N-1)
DO 450 I=2,NM1

4350 Z(N=I)=(Y(N=I)=S(N=I)*Z(N=I+1)=U(N=1)*Z(N))/R(N=I)
1000 CONTINUE
M8 = M1/11
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13
14

12

00 135 K=1,M8

ABC(K) = DwK*xI1

SWA(K) = WA(K)

WRITE(1,14) M8

FORMAT(IS)

WRITE(1,12) (ABC(M),SWA(M), M=l ,M8)

FORMAT(2E13.6)

‘sTOP

ENO

FUNCTION F(X)

CoMMON 21,SIGMA

DOUBLE PRECISION A,SIGMA,P1,X,F

A = 3,.SDO*SIGMA

IF (P1=.LT.X.AND.X.LT.P1+a) THEN
F = DEXP(=(X-P1)%*x2/SIGMAX*2)

ELSE
F = 0.00

ENDIF

RETURN

END
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/
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APPENDIX F

THE CODE SR2.FOR

This code deals with pair of integro-differential equations of Bonifacio and Lugiato
(Ref. F.1):

) 2g02
p(m.t) = - —

J-‘ ds o K (t-5)- (t+s) 2T
0o

{g(m) p(m,s) - g(m+1) p(m+1,s) + [g(m) + g(m+ D]V (m,s)

- g(m+1W (m+1,s) - g(m+)N (m-l,s)},

2

: 2 t ‘ "
N m=2KN@my+ —2 [ ds & KE 96921
0

{ g(m+1) [p(m+1,s) +N (m+1,s) -N (m,s)]}. (F-1

These equations are converted into a system of 4(2r + 1) equations by introducing two
families of unknowns:

*
U(m,t) = P(m, t) e Ke+ (2T )

. Kt +v(2T, )
V(m,t) = (N(m, t) + 2K N (m, t)) e ,

m=1,..,2r+1 . (F-2)
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The result is the system

Pm, ) = Ugm, e LK+ t/(21; )]
*
Q(m’ t) = -2K Q(m, t) - V(m, t) e [Kt + t/(2T2 )]

*
ﬁmuo=-eK%'”QT2)&mummx)-ym+anu4¢ﬂ

-gm+1)Qm+1,t) + [g(m +1)+ g(m)] Q(m, t)
- g(mQ(m-1,¢t

XK
ke, v(2T, )

V (m, t) g(m + 1)

[Pm+1,9+ Qm+1,t- Qm,v],

m=1,.,2r+1 . (F-3)

This system is written compactly as

Y @) =A@l Y{),t=0

( P(1, t) )
PQ2r+1,1)
( N(1 t) )

N(2r+1 t) ' (E-4)
( U(l t) )
U(2r+l t)
( V(l t) )

V(2r+1 t)

where

Y(t) =




and A(t) is the appropriate matrix to make equation (F-4) equivalent to equation (F-3).
A Runga-Kutta scheme is used for the calculation
Y - Yo+ A Y@+ A [Yw+aaw YRl @)

where Y(t;), is the value of Y at an "old" time t; and Y(tp) is the value of Y at the
corresponding "new" time ty.

Three different sets of initial values could be introduced into the calculation.
N-m+1 m-1, N
(1) Pm) = (1 =Py """ P (1py)
Qm) = e'Y,Ym— 1/(m~1)!

U(@m) =0
Vim) =0 m=1,2,..,N
2 Pm) = gy[g2+m-my)’]
Qm) =0 m=1,2,..., N for same m,
Um) = 0
Vim) =0 ,
3) P(m) =0 Form=1, .., 2r+ 1 except P(m1) = 1 for some M1
N(m) = 0
Um) =0 m=1,..,2r+1
V(m) = 0

An annotated listing of SR2.FOR is given, together with some graphic output.
What is plotted is % Q(m,t) as a function of t. Repeated runs were made for various values

of h (time-step size): h = 10-17, 10-16, 2 * 10-16, 1015, Results for these runs show
excellent agreement in that output is insensitive to the size of H in this range.

It should be noticed that although the main qualitative features of ; Q(m,t) are
reasonable, the value of % Q(m,t) turns slightly negative for certain values of t. This is

physically wrong and is due to a truncation in Bonifacio's model. A closed form analytical
solution was obtained for the case N = 2 and is described in Appendix D.




PARTIAL LIST OF PARAMETERS FOR SR2.FOR

N = sample size

XK1 = constant K

XK2 = 12T,
= time step size
GOP = g,

PC = (p), probability initial binomial distribution
GM = mean of corresponding Poisson disiribution
IS = number of time steps computed before data is retained for purpose of
graphing
V = physical volume
Generally, d_{)(T_Z)_S)_ should be in the range 200 to 500 for purposes of graphing. Data set
"1" contains data for graphing purposes. |




SR2 SUPERRADIANCE CODE 2

C PROGRAM SR2.FIR - 19 AUGUST 1986 - J. NEUBERGER

DOUBLE PRECISION P(201),Q(201),R(201),S(201),G(201)

DOUBLE PRECISION PD(201),Q0(201),RD(201),SD(201)

DOUBLE PRECISION XK1 ,XK2,TF,T0,GOP,V,H,T,TPH,X,Y,PC,GM

OOUBLE PRECISION P1(201),Q1(201),R1(201),81(201)
OOUBLE PRECISION P2(201),Q2(201),R2(201),52(201)
DOUBLE PRECISION X1,X2,X3,X4,X3,X6
DIMENSION ABC(1000),SWA(1000)
COMMON N.XK1,XK2,G
OPEN(1,FILE="SR2.PLT/,STATUS='NEN")
OPEN(2,FILE="SR2.DAT  ,STATUS="NEW")
OPEN(3,FILE="SR2A.DAT’ ,STATUS=’NENW’)
OPEN(4,F:LE=’SR2B.DAT’ ,STATUS=’NEN’)
WRITE(6,*) “INPUT TF,H,IS,N,XKl,XK2,M1 !

C TF = FINAL TIME (TYPICAL VALUE 3.D0)

C H = LENGTH OF TIME STEP (TYPICAL VALUE 2.D-4)

1S = NO. OF TIME STEPS SKIPPED (TYPICAL VALUE 30)

N = NUMBER OF ATOMS (TYPICAL VALUE 100 - IF>200, INCREASE DIM)

XK2 = 1/T2-STAR (TYPICAL VALUE 1.0-18)
M1 = EXCEPTIONAL POINT FOR DELTA DISTRIBUTION
READ(S,*) TF,H,IS,N,XK1,XK2,M1
WRITE(2,80) TF,H,IS,N,XK1,XK2,M1 A
80 FORMAT(1X,’TF=/,010.3,‘ H=/,D10.3,’ [S=",13,
’ N=’,14,’ XK1=’ ,D10.3,” XK2=’,D10.3,’ Ml=’,13)
GOP = 1.17D0
ABOVE [S A SAMPLE VALUE FOR GOP
V = 4,4D-24
ABOVE IS A SAMFLE VALUE FOR THE VOLUME V
T0 = 0.00
C PC = PROBABILITY OF POISSON DISTRIBUTION
PC =,1D-4
C GM = CONSTANT ’‘GAMMA’
GM = -DBLE(N)*DLOG(PC)
NP1 = N+1
C MC = TOTAL NUMBER OF TIME STEPS
MC = INT(SNGL(TF/H) + .1)
C M8 = NUMBER OF DATA POINTS
M8 = MC/IS
WRITE(1,94) M8
94 FORMAT(1S)
c INTRODUCTION OF G-CONSTANTS
DO 1 M=1,NP1
1 G(M) = DBLE((M=1)%(N-M+2))%4,D0/DBLE(N)

C
c
€ XK1 = K’ (TYPICAL VALUE 1.3D0)
c
c

O000

C THE FOLLOWING INITIALIZES P,Q,R,S FOR A POISSON DISTR(-UTION
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P(1l) = (2.-PC)
QL) =0.)-4
c Q1) = CEXP(-GM)
R(1) = 0.0
S(1) = 0.20
DO 2 M=2,NP1
P(M) P("=1)%DBLE(N=-M+2)*PC/(DBLE(M=1)%(1.-PC))
QM) = 0.2~-4
QM) = Q(M~1)%*GM/DBLE(M=-1)
R(M) = 0.20
S(M) = 0.20
END OF POISSON DISTRIBUTION INITIALIZATION
THE FOLLOWING :NITIALIZES P,Q,R,S FOR A LORENZIAN DISTRIBUTION
GO0 = G0/2.D0
MO = 1
D0 2 M=1 NP1
P(M) = GO*%2/(G0%%*2+(FLOAT(M) ~ FLOAT(MO) )%*x2)
QM) = 0.20
R(M) = 0.20
S(M) = 0.20
END OF LORENZIAN DISTRIBUTION INITIALIZATION
THE FOLLOWING INITIALIZES P,Q,R,S FOR A DELTA DISTRIBUTION
DO 2 M=1 NP1
P(M) = 0.0
Q(M)y = 0.00
R(M) = 0.D00
S(M) = 0.20
P(M1) = 1.D0
END OF DELTA OISTRIBUTION INITIALIZATION
START OF MAIN _00P
DO 1000 J=1 ,MC
T=DBLE(J=1)%H
caLL AM(T,P,Q,R,S,PD,QD,RD,SD)
TPH = T+H '
DO 3 M=1,NP1
P1(M) = P(M) + HXPD(M)
QL(M) = QM) + H*QO(M)
R1(M) = R(M) + H*RD(M)
3 S1(M) = S(M) + HkSD(M)
CALL AM(TPH,P1,Q1,R1,81,P2,Q2,R2,S52)
DO 4 M=) NP1
P(M) = P(M) + (H/2.D0)*%(P2(M) + PD(M))
QM) = QM) + (H/72.D0)X%(Q2(M) + QD(M))
R(M) = R(M) + (H/2.D0)*(R2(M) + RD(M))
4 S(M) = S(M) + (H/2.D0)%(S2(M) + SO(M))
IF((J/18)*1S.EQ.J) THEN
X1 = 0.00
X2 = 0.00
X3 = 0,00

(o]

N
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X4 = 0.00

DO S M=) N+l

X1 = X1 « DBLE(M)*P(M)
X2 = X2 + DBLE(MN*2)%*P(M)

X3 = X3 « DBLE(M)*Q(M)
X4 = X4 + Q(M)
S CONTINUE

X3 = X14w2 - X2
X6 = X3 = X4%X1
WRITE(3,37) T+H,X1,X2,XS
WRITE(4,27) T+H,X3,X4,X6
97 FORMAT (1X,4D12.4)
TREAL = SNGL(T+H)
XREAL = SNGL(X4)
WRITE(1,9%) TREAL,XREAL
FORMAT (2E1S.6)
WRITE(8,98) (P(M), Mm=i ,NP1l)
WRITE(8,98) (Q(M), M=1,NP1l)
WRITE(8,98) (R(M), M=1,NP1)
WRITE(8,98) (S(M), M=1,NPl)
ENOIF
00 11 M=l NP1
IF(P(M).LT.0.D0) P(M)=Q.D0
X=0.00
DO 12 M=1 NP1
X= X + P(M)
00 13 M = 1,NP1
P(M) = P(M)/X
1000 CONTINUE
FORMAT(1X,10013.4)
STOP
END
SUBROUTINE AM(T,P,Q,R,S,PD,QD,RD,SD)
DQUBLE PRECISION P(1),Q(¢1),R(1),S(1)
DOUBLE PRECISION G(1),PD(1),QD(1),RD(1),SD(1)
DOQUBLE PRECISION T,C1,C2,XK1,XK2
Cl = DEXP(XK1%T)
C2 = DEXP(=XK2%T)
PO(1) = C2%R(1)/C1
Q0(1) = -2.DO%XK1i%*Q(1l) + C2%*S(1)/C1
RD(1)==Cl%xC2*(G(1)*P(1)-G(2)*P(2)=G(2)*Q(2)+(G(2)+G(1))%*Q(1))

)

ongn O0O0O00OWw
[

000
e
w N

9
[+ ]

SD(1) = Cl*C2%G(2)*(P(2) + Q(2) - Q(1))

DO 1 M=2,N

PD(M) = C2%R(M)/C1

QD(M) = -2.D0%XK1*#Q(M) + C2%S(M)/C1

RO(M) = —Cl*C2x(G(M)*P(M) ~ G(M+1)*P(M+1)
=G(M+L)*Q(M+L) + (G(MFLI+G(M)I*Q(M) = G(M)*Q(M-1))
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1VC2#G(MHL)* (P(M+1) + Q(MFL) = Q(M))

soM) = C

PO(N+L) = 2%R(N+1)/C1

QD(N+1) = -2,.DOXXK1*Q(N+1) + C2*S(N+1)/Cl

RO(N+1) = =CLleC2%(G(N+PLI*P(N+1) + G(N+LI*XQ(N+1) = GIN+1)I*Q(N))
SO(N+1) = 3.D0

RETURN

END
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APPENDIX G

CODES SR3.FOR AND SR4.FOR

Both codes SR3 and SR4 deal with the semiclassical calculation of the superradiant
emission. The radiation intensity is obtained from Ref. G.1.

I _kv? o0 e 2 G
=2 |¢ O * . (G-1)
Code SR3 calculates @(t) from the damped pendulum equation
2 1 .
do [k + ——] do 1 -vT, .
r. L ———e “sinot)=0, (G-2)

t=20

which takes into account both cooperative emission and stimulated emission and thus

produces ringing effects.
Code SR4 calculates ¢(t) from the overdamped pendulum equation (12.2, Ref.
G.2)
de®) 1 VT,
e e sin@(t) (G-3)
t20

and calculates a pure superradiant emission.

Both codes incorporate the initial conditions

172
2
o0-(F . 2O _, (G-4)

to take into account the quantum noise polarization which initiates the pendulum motion.

A conventional second-order Runga-Kutta method was used in both codes.
Annotated listings follow.
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PARTIAL LIST OF PARAMETERS FOR SR3.FOR

TO = starting time
H = time-step length
= final time
= population size
XK = constant 'K’
T2S = go
= physical volume

IS = number of time-steps to be skipped before data is retained for graphing

Data set "1' contains data for graphing purposes

PARTIAL LIST OF PARAMETERS FOR SR4.FOR

T = final time
H = time-step length
R = sample size
Y = starting value [value of ¢(0)]
GO = g
V = physical volume
IS = number of time steps skipped before calculated data is printed out




SR3 SUPERRADIANCE CODE 3

PROGRAM SR3.70R - 19 AUGUST 1986 - J. NEUBERGER
DOUBLE PRECISION DM1,DM2,DN1,DN2,XM1,XN1,T,TO,R,H,TF,XM,XN
DOUBLE PRECISION GO,V,T2S,XK1,TPH,XK2
COMMON R,XK1,XK2,T2S,V,G0
OPEN(1,FILE=’SR3.PLT’,STATUS='NEW)
OPEN(2,F1_E=’SR3.DAT’,STATUS="NEW’)

C H = LENGTH OF “IME INTERUVAL (TYPICAL VALUE 1.0-15%)

C TF = FINAL TIME (TYPICAL VALUE S.D-11)

C IS = NO. TIME STEPS SKIPPED BEFORE OUTPUT (TYPICAL VALUE 100)

C XK1 = CONSTANT ‘K’ (TYPICAL VALUE 1.5011)

C XK2 = 1/T2-STAR (TYPICAL VALUE 1.D-6)

C N = NUMBER OF ATOMS (TYPICAL VALUE 100.D0)

WRITE(G,%*) /INPUT H,TF,IS,XK1,XK2,N

READ(S,*) H,TF,IS,XK1,XK2,R

WRITE(2,80) H,TF,IS,XK1,XK2,R

()

80 FORMAT(1X, H=’ ,D10.3, TF=/,D10.3,’ [S=’,13,
. 7 XK1=/,D10.3,’ XK2=’,010.3, ‘ N=-,D10.3)
TO = 0.0D0
c NEXT TWO LINES GIVE INITIAL VALUES OF DERIVATIVE AND UNKNOWN
XN = 0.00

XM = DSQRT(2.D0/R)
c CONSTANT ___
GO = 1.17D0/DSQRT(2.D0)
T2S = 1.00/XK2
C UV = YOLUME
V = 4.40~24
C MC = TOTAL NUMBER OF TIME STEPS
MC = INT(SNGL(TF/H) + .1)
C M8 = NUMBER QF POINTS TO BE PLOTTED
M8 = MC/1S
_ WRITE(1,94) M8
24 FORMAT(IS)
(o START OF MAIN LOOP
DO 1000 J=1 ,MC
T=OBLE(J)*H
CALL AM(T,XM,XN,DM1,DN1)
XM1 = XM + HYOM1
XN1 = XN + H*DN1
c IF((J/718)*1S.EQ.J) WRITE(6,97) T,XM1 ,XN1
TPH = T + H
CALL AM(TPH,XM1,XN1,DM2,DN2)
XM = XM + (H/2.00)%(DM1 + DM2)
XN = XN + (H/72.D00)%(DN1 + DN2)
c WRITE(6,%) XM,XN,DM1,DN1,D0M2,0N2
TREAL = SNGL(T)

G-5




C REMOVE NEXT COMMENT [F OUTPUT PRINTOUT IS WANTED

c IF((J/7IS)*IS.EQ.J) WRITE(6,97) T,XM,XN
1000 CONTIMJE
96 FORMAT 2E15.6)
9?7 FORMAT{1X,3018.10)
STOP

ENO
SUBROUTINE AM(T ,XM,XN,DM,DN)
- DOUBLE PRECISION XM,XN,DM,DN,R,XK1,XK2,T25,V,G0,T
COMMON R,XK1,XK2,T2S,V,G0
oM = XN
ON = =XK1 + 1.D0/T2S)*XN + DEXP(=T/T2S)*DSIN(XM)
RETURN
END
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SR4 SUPERRAUIANCE CODE 4

C PROGRAM SR4.FCR - 19 AUGUST 1986 - J. NEUBERGER
DOUBLE PRECISION T,R,H,Y,GQ,V,XK1,C,F,XK2
COMMON C,.XK2
OPEN(1 ,FILE="SR4.PLT’,STATUS='NEW’)
OPEN(2,FILE=’SR4.DAT‘ ,STATUS='NEW’ )

T = FINAL TIME (TYPICAL VALUE 10.)

N = NUMBER OF ATOMS IS THE (TYPICAL VALUE 100.00)

H = LENGTH OF TIME STEP (TYPICAL VALUE 1.D-4)

IS = NO. TIME STEPS SKIPPED BEFORE OUTPUT (TYPRICAL VALUE 500)

XK1 = CONSTANT “K’ (TYPICAL VALUE 10.)

XKQ = 1/T2=-STAR (TYPICAL VALUE 35.0-7)

WRITE(6,%) * INPUT T,N,H,IS,XK1,XK2 ’
READ(S,*) T,R,H,IS,XK1,XK2
WRITE(2,80) T,R,H,IS,XK1,XK2
80 FORMAT(1X, T=/,D10.3, N=‘ ,D10.3,’ H=’,010.3,
. © ]S=/,13,7 XK1=’,D10.3,‘ XK2=’,D010.3)
c Y = INITIAL VALUE OF SOLUTION - TIED TO ‘N’ BELOW
Y = 1.D00/DSQRT(R)
C GO = CONSTANT
GO = 1.17D0/0SQRT(2.00)
C = 1.D00/XxXK1
c MC = TOTAL NUMBER OF TIME STEPS
MC = INT(T/H + .1D0) + 1
c M8 = NUMBER OF DATA POINTS SET TO PLOT ROUTINE
M8 = MC/IS
WRITE(1,97) M8
9? FORHQT(IS)
00 1000 M=l ,MC
T = HEDBLE(M-1)
Y =Y 4+ J00%HE(F(Y,T) + F(Y + HrF(Y,T),T+H))
c IF(((M=1)/1S)*1S.EQ.M-1) WRITE(6,99) T,Y
TREAL = SNGL(T)
YREAL = SNGL((R/4.DO)Y*F (Y ,T)**2*DEXP(T#*XK2) )
IF(((M=1)/1S)*IS.EQ.M=-1) WRITE(1,98) TREAL,YREAL

OO000O000

98 FORMAT(2E15.6)
1000 CONTINUE
29 FORMAT(1X,2015.6)
STOP
END

FUNCTION F(X,T)

DQUBLE PRECISION X,C,F,T,XK2
COMMON C,XK2

F = CADEXP(~T#*#XK2)*DSIN(X)
RETURN

END
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APPENDIX H

EQUIVALENCE OF THE SEMICLASSICAL AND
THE DRESSED STATE APPROACHES TO THE
TREATMENT AND INTERACTION OF
ATOMIC AND NUCLEAR SYSTEMS

H.1 INTRODUCTION

In this appendix it is shown that for electromagnetic (EM) fields with a large
number of photons, the treatment of the radiation either as a classical oscillating field or in
the second quantized form ("dressed state”) is completely equivalent. To simplify the
algebra, we treat the interaction of EM radiation with a pure two-level system (TLS). We
show that one obtains identical sets of dynamic equations in either of the two approaches.
We shall use density matrix equations in both pictures. For concreteness and simplicity we
~ shall consider the two-level system to be atomic and the interaction of the EM radiation with
the electrons. The extension to the nuclear case is straightforward.

H.2 THE SEMICLASSICAL APPROACH

The electric field vector is written as
E® =% E, (¢! +e® , (H-1)
where € denotes the polarization vector, Eq the peak amplitude and ® the angular frequency

(rad/s) of the radiation field. The interaction of an electron with this radiation field is
represented by the Hamiltonian

V()= - E = - R E,(!® + 7 (H-2)

in the electric dipole approximation (E1 transitions).

Let -~ two-level system be described by states l1> and 2> that have energies hw,
and ha» and are connected by a dipole transition (L12 = H21, and pyq = p22 = 0). If Ho
denotes the atomic Hamiltonian in the absence of the field, then we have
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Holl > = hogf1>

and
(H-3)
Hyl|2> = hay|2>
The density matrix operator p satisfies the differential equation
%’. =- o Hy+ Vo) . (H-4)

Taking matrix elements of equation H-4 between states [1> and 12> and, defining Pij =
<i Ip lj>, we obtain the following equation:

ap N i
—- =5 Vi2Pu+ § PVy (H-5a)

dpor i i
& = 1 2Pt F PaVi (H-5b)
12 0Py -t (Vi Pan P V,s) (H-5¢)

da 12912 =75 Y'12722"11 12
d . i

@ P12 =- 1920001 - (V1 P11 Pa Vo) (H-5d)
W9 = - 0)2 = -7 (H-5¢)

i
Vig=Vy=—Hy Eo(em*' e

At this stage we make the rotating wave approximation (RWA). This amounts to pulling
out the fast time variations in pj; as shown below:

Pl1= 011 » Py =0y

Pip = ¢19G 0 and Py~ Mo, . (H-6)




This approximation is valid if
O+ @y >> 0~ 0, H-7)
(orawn >>wp) .

Substituting (H-6) into (H-5) we get

do :
i _ i it o-i i
G =t h M2 Eo@® +ei™) gy ol
i . -. .
-4 Mg Eg @' +e M) g ) et (H-82)
doyy i it -ia ot
% -ty K1 Eq e +e ) Gpet!

. %1- My Eg (e i, o -iax, Gyq e-it (H-8b)

. do .
ot 12 = -i
et (T + 1(00'12) = -i0)) 6,5 e

i ot , -iat i
+ T ulz Eo(e +e’! )(0'22 0'11) . (H-8¢)

do .
. 21 . : -1t
e it (‘E‘l "°’°21) = -i0y0p; ¢
+ 3 B1p Eq (ei‘*“+e'i°")(ou- Gy) - (H-8d)

Finally, dropping antiresonant terms like e*i2®t in (H-8) we obtain the following
semiclassical optical Bloch equations, where Q = 2J117E, is defined as the Rabi frequency.




dcll

11 _ . . 1 . %

m - T 90 Ti 0%, (H-9a)
do

2 1. L a*

= = -5 1Q0,- 5 iQ S, (H-9b)
4o, ]
a %12 "i80p = 5 iQ (6, 0y - (H-9¢)
d : 1 . %
at @21 +i0021 = -5 i Q% (055-0yp) > (H-9d)

where
8=(!)21-0) .

H.3 THE SECOND QUANTIZATION APPROACH "THE DRESSED-
STATE METHOD"

Here the atom and the radiation field are treated together as a single system. The
interaction between them is assumed to be absent for times t < 0. At time t = 0 an
interaction is turned on. We would like to investigate the evolution of a two-level system
for times t > 0.

Let Ha and HR denote the unperturbed atomic and the field Hamiltonians and V the
interaction between them. Since atom + radiation is a closed system the total Hamiltonians

H=Ho+V=Hpo+Hr+V (H-10)

is time-independent. Let us assume a single mode field for simplicity. The eigenstates of
H,, are composite (dressed) states of atomic and field eigenstates. So, ignoring the 1/2 hw

term
H, li,n> = M, +Hp) li,n> =1 (0, + nw) i, n> . (H-11)

The manifold of dressed states formed by a two-level atom and the single-mode radiation
field is shown below.




[ J)

L]
L d
-——-L- 12> 12,ns1> - M
3 - I1,ne2>
- ‘"'f"
o 2,n>
> (t,ne1>

Bf_———|1.n>

12n=-2>
i' T— t,n=1>
/]

1-8-07-4 th=2>

Note that on resonance, 8 = 0 and states |1,n> and [2,n—1> become degenerate. The
interaction via the electric dipole transitions then splits these into two mixed states. In the
electric dipole approximation, the interaction V can be written as

V=-{E

=—u,/—‘“3m @+a*) p=HE , (H-12)
n

where a and a* are, respectively, the annihilation and creation operators for the field mode
and Vj, is the normalization volume. Because of this interaction, the near-degenerate pairs
{I1,n>, |2,n—1>}, { [1,n-1>, |2,n-2>} become perturbed and evolve into two mixed

states.

NOTE: |1,n> not only has allowed transitions to |2,n-1) but also to |2,n+1).
However, as long as lw12 + 0l << w21+ @ (Eq. H-7), such antiresonant
transitions can be ignored.

The Hamiltonian matrix for the 2 x 2 pair is then written as follows:

Hl 1,n> =t +0w) | 1,05 -, L2t 2, n-1 > (H-132)
Hl 2,n-1>=h[0,+@-Dw] |2, 1-1>-p,, {2mmhw [1,n> . (H-13b)

Diagonalization of the above Hamiltonian gives rise to two mixed eigenstates lotn> and
IBn>. These are expressed as
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1 . 1 . 2
E = [h(ol +ho, + (2n 1)1@] += /g . 4, 2nnhe

a 2 2V
.
= 0+5A (H-14a)
E _l[‘hm +ho. +(2n+1)1'1m:| 1 \/32 4 2 2nnth
pT2L 2 "7 VO T eme
1
=E0'§A . (H'14b)
-2u12J21mwa
jo,n> = T [1,n>
[(8 + &) + 4y, 2mnfi)
+ 6+A T 1201 > H-15a)
(3 + A)* + 42, 2nnfiw]
[o,n>—-[2,n-1> as By = 0
|B’n>= d+4 1 |1,l'l>
(5 +A) + 442, 2nnh)
2 2nnhi®
Hay - 12,n-1> (H-15b)

(3 + &) + 42, 2nnhicn)

Note that if 4 p2, 2mrfio << & + A then,

la, n> = |2, n-1 , E, >E++ 8
o 0

and
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IB.n>—ltn> . By E-235. (H-15¢)

Such diagonalizations have to be performed for each pair [ |1,n>, [2,n — 1>)]. However,
for n >> 1 all of the dressed state pairs behave the same way.
The time evolution of the system is then described by

4E thr -i E_tIr
|\|f(t)>=am(o)el @ |ot,n>+aB(o)cl B | B, n>. (H-15d)

If one uses this solution to calculate the time evolution of the probability of the
population in the upper state, one obtains exactly the same behavior as given by the
solutions of (H-9). This is shown in the next section.

H.4 COMPARISON OF SEMICLASSICAL AND "DRESSED STATE"
SOLUTIONS

The Rabi solution of equations (H-9a) through (H-9d) for a two-level system
coupled to a monochromatic field will be obtained with the initial conditions

o11(t=0)=1 62 t=0)=0
o2 (t=0)=021(t=0)=0.

It can be shown that the four equations (H-9a) through (H-9d) are completely
equivalent to the following two "amplitude" equations:

C C
d 1 ) 1
E[CJ"A[ Cz}’
where

(H-16)

and the eigenvalues of A are given by
P 1 2 2
= = - P <+
At 3 + 2 P ¥oY

The density matrix elements are related to the complex amplitudes C; and C;
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With the initial conditions
Cit=0)=1 C2(t=0)=0

the solution of equations H-16 is given by

+ +

C lg 1 . A L
l: l(t):l . 2 Q 2 Q [eo‘“ 04 ] 2 ((1)]
QO] Laoay|[r, | a, Lo\

or
iAt _ At
C,(t) = Ae A e
-1,
-" —7& L . ll+l
G, = ﬁ (e'l“t- e ) ,
so that
A2+l 2% - A
pll(t) = I Cl(t) |2 =— — - +2 cos [()\._'_ - X_)t]

*, -2 (-1
1 2 1 2
Flar il

2
Dy =1 C,0 2= :
S R R A 2

cos [().+ 1 H-17)

Note that p11(t) + p22(t) = 1 for all times.

In the dressed state picture, the states |1,n> and [2, n-1> mix to give rise to two "dressed"
states log> and By> whose energies and wave functions are given by equations (H-14) and
(H-15), respectively.
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In cgs units, the intensity is given by I = (¢/2x%) [Eo 2 while in second quantization
picture I = nfiwc. These two equations together imply that E | = ¥ 21nfio  and, therefore
1Q = 2y, E, = 21, {2nnhe .

Using the definition 8, = wy—w1-w, we get

E, =tho, +nﬁw+%h8°+-;—‘h,/\/8§+92 (H-18a)

=1 (0, + nw) —HA_

Eg =1 (0, + nw) -1k, . (H-18b)

Using the definition of Q, A = hAg and A+ the eigenstate equations H-15a and
H-15b can be rewritten as

o,n>=- ;‘:'M |1,n>— /7‘-—}\:7# |2,n-1> (H-19a)
|B,n>=- A |in>+ A |2, n-1> (H-19b)
SRRV W Vi Ak, '

The time-dependent solution to the problem is then given by

v =2, ¢ " o n > +a,0) eE8" |B,n> (H-20)

where a,(0) and ap(0) are determined by initial conditions or equation (H-15d).

At time t = 0, before the interaction is turned on, Y(0) = I1,n>. This implies,
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(H-21)

] A
a (O) = - A'_ , a (0) = - .
« a-1) P M_-1)

Then, using equations (H-17) through (H-21), y(t) can be written as

-A
v =- T [ —— " B>
(x_-x+) O - x) P
i + 1 X
o ATV l1n> 12,01 >
M. - x) A-A,

/ A,
[1,n>+ |2, n-1>
(A - ).) - 7») (A_-%)

'&l

Rearranging,
pe™ g M
i(w +nm)t € -Ae
y(t)=e . r  I1,n>
A_-1)
@( + i}"t)lz 1 (H-22
+ e -e ,n-1>) -22)
A_-1)
The phase factor e! 1 *2®* can be ignored as it makes no contribution to any observable

quantities. We immediately see, by writing
y(t) = Ci(t) i1,n> + Ca(t) 2,n~1> (H-23)

that the coefficients Ci(t) and C(t) are exactly the ones calculated before. So the two
methods give identical solutions.
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APPENDIX I

ENHANCEMENT OF y-EMISSION USING LONG-
WAVELENGTH RADIATION

Consider a three-state system as shown schematically in Fig. I-1 with a ground
state |b> an isomeric state |a> and an upper level lc>. Initially the system is in state la>,
an isomeric level with a lifetime on the order of 107 s (Y2 = 10-7 5) 104 eV above the ground
state [b>. The level lc> can be excited with a single photon or multiple photons. The
energy separation between the isomeric level and the ground level is Eap = 104 keV and
between the upper level and the isomeric level is Eca. The decay rates of the upper and
isomeric levels are Y¢ and ¥,, respectively, with ¥¢ >> ¥,.

le>
la> -’/ ~

1b> ‘
@ &)

Figure I-1. Electromagnetic excitation of a three-level system showing
photon absorption followed by emission (process 1) and
emission followed by photon absorption (process 2)

We will assume that only the isomeric level is initially excited and calculate the
probability as a function of the beam intensity I that a low-energy photon with energy hw >
E., induces the transitions ( la> = k> — Ib>, thus depopulating the isomeric level.
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For convenience, we shall work within the second quanitized formalism for treating
the emission and absorption. The decay rates will be introduced phenomenologically.
Both processes 1 and 2 depicted in Fig. I-1 will be considered. Process 2 is more
prominent close to resonance.

The initial, final, and intermediate states for processes 1 and 2 are given by:
|la> =|a; n, 0> (initial state)
|b> = |b; n-1, 1> (final state)

|c1> =c;n, 1> . .
(intermediate states)

lc,>=]c; n-1,0>

2

where n is the number of photons in the beam and one photon is absorbed from the beam.
The energies of these states divided by h are:

“’a=°’a + nw

W =(ob'+(n-1)o)+0)' (I-1)

b
mcl'—'mc +n®+ 0

®,=0"+ (n-1) ®

with @;', Wp', ®¢' the energies of the nuclear or atomic levels divided by h, respectively,
and hw and ho' the incoming and out-going photon energies, respectively.

The dynamics of the density matrix p is given by:
dp/dt = -i[Hp + V, pl + T'p , (I-2)

where Hj, is the non-interactive part of the Hamiltonian, V is the interaction Hamiltonian
and T is the decay matrix. In the above expression fi has been set equal to 1. We will

focus on process 2 and assume the rotating wave approximation. The approximate error in
this assumption

(0 - W3 -0)/(Q - Wa + ) (I-2a)
is a function of the detuning.

The rate equations for the diagonal matrix elements from equation (I-2) are:




d/dtpaa =i Vacl Peta ™ ipacl Vcla " YaPaa - i [Vac2 Pe2a ~ Pac2 Vc2a] (I-3a)
d/dtpclcl = -i [Vclapacl " Peia Vacl] -1 [Vclb Poc1 ™ Pern Vbcl] “YePeter (I-3b)
didtpy, = -1 Vi Pegp = Poer Vern] =1 [VieaPeob = Poca Y eow) (I-3¢)

+ Yapaa + Yc (pclcl * pc2c:2).

d/dtPeocr = -1 [VezaPac2 ~PezaVac2] - 1 [VeabPoez - Py V2]~ YePe2e2  @-3d)
and for the off-diagonal matrix elements are:
d/dtpac1= - (172) (Ya + Yc) Pact - i(Dacl Pact - i (Vaclpclcl + Vac2 pc2c1) (I-3¢)

+1 (paavacl + pabvbcl) '

d/dtpac2 =-Q172) (Ya + Yc) pac2 -1 maczp ac2 ~ i (Vacl pclc2 + VachchZ) (-30

+i (paavac2 + pabvbcz)

d/dtpab =-(172) YaPab - i ©pPab - i (vaclpclb + Vac2pc2b) (I-3g)

+1 (paclvclb + pacZVCZb)

d/atp ;0 =~ YePerca ~ 1 Deiea Perez ~ 1 (VeraPac2 + VeioPoc2) (I-3h)

+1(Pg1,Vac2 + Perv Y be2)

d/dtp;yy, = - (1/2) () Peypy = 1 @ 1Peip = 1 (VeraPah + VernPen) (I-31)
+1(Pye1Vern + Perea ean)
d/dtp .y, = - (1/2) (Y)) Pegy = 1 O P ep = 1 (VegaPap + VeaoPron) (I-3j)
+ 1P 901 Vers * PezeaVeaw)

The solution of these 10 (complex) (or 16 real) equations will give paa, Pbb, Pec for
arbitrary intensities and detunings. This solution is equivalent to the dressed state result.

Near resonance, ®W~®¢ - W, and the absorption + emission pathway is much

stronger than the emission + emission pathway. Thus, matrix elements containing g can
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be neglected. The problem then reduces to a three-level system (a, c2, b). Equations
relevent to this case are:

dp,,/dt = - ¥,Py, - i [VacaPes - Pac2¥ c2a) > (I-4a)

dpbb/dt = YaPag + YePeac2 - i [Vbc2pc2b B pb¢:2vc2b]’ (I-4b)

dpc2c2/dt = YePe2e2 - i [Vc2apa<:2 i pCZaVaCZ] (I-4c)
1 [VeauPuez ~ Peab Voea! »

dp ax:Z/dt =[- 12 (Ya + Yc) B iwacZ] Paca - iVacZ p c2c2 paa) +1 pabvbc2’ (I-4d)

dpab/dt = [' 172 Ya -1 0)ab] pab -1 Vac2pc2b +1i pac2 Vc2b’ (1-46)
dpegy/dt = [- 12 Y, - 1 @] P gy, - 1V oy (Pyy - Pegca) =1 VigaPip - (I-4f)

In the above equations the coherence between a — ¢ and c3 — b steps is retained. If we
wish to neglect the c3 — b coherence, set Ppc2 = pe2b = 0 = pab- These equations then
reduce to twe-level equations

dp,a/dt=-YPoy - 1 IV 2P~ PacaVezal » (I-52)
4P a2/t = - ¥Porer =1 [VeraPac ~ Peaa Vaea] > (I-5b)
dp ac2/dt = [-1/2 (Ya +7,) - i mac)] Paca - i Vac2 (pczc2 - paa) , (I-5¢)
dpbb/dt = Yapaa + chc2c2 . (I-3d)

The matrix elements Vis used in equations (I-3) through (I-5) have to be calculated
according to the multipolarity of the transition. We show how this is done for an electric
dipole transition. The result has to be appropriately generalized for other transitions. The
interaction Hamiltonian for an E1 transition is given by

2rio + 2rnhoe' , -+ .
V=-pu / v (a+a)-p / 2 (@+a). (I-6)

From this we calculate




2rho'
Var =<an0|Viemls>=-p / v = Vi (1-7a)
n
2nhon
Vo =<an0|V]cn-1,0> = - My / v = A (I-7b)
n

2rhon
Vier = Hee v = Ve (-7c)
n
2rho'
Viez =~ Hye v = Ve (I-7d)

The above example was carried out for the case when a single photon participates in
the upconversion process. To generalize to a multi-photon process, with m photons
participating, the appropriate intermediate and ground states are

| e>=lc, n-m, 0> (I-8)

| b>=1|b, n-m, 1>

and the matrix element Vaco(™ which is given by:

<a|V|I><1|V|2>....<m-1|V|C>
12m1 M (0,-0, +0)h (0, +20- @,)..N [0, +(m-1) ® - mm_l]

I-9)

v ac2(™@ =

should replace V,¢3 in equations. Similarly, V2,(m) should be substituted for V2,. States
1>, [2> through Im-1> are the intermediate levels obtained from excitations of real states

off resonance as shown in Fig. I-2. In our case, in the three-level system they would
involve la> or Ib> only.

The level energies for m photon processes, corresponding to equations (I-1) for
single photon processes are:

3 = 03 +nw , _ (I-10a)
Wp=0p +(n-MoO+, (I-10b)
Wep =0 +00+ ®' , (I-10c)
O2=0c'+(n-mo . (I-10d)
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| e> l y A 4

Figure I-2. Nuclear decay scheme for the two-level system showing a single
photon with energy ho absorbed from the beam and a higher energy photon
with ho' = ho + Eg — Ep emitted by the system as process 1. The
spontaneous decay rates from |a> and lc> are yq and v, respectively,
with va << v¢. A multiphoton process with three photons of energy ho
absorhed by the system and a photon of energy hw =3 ho' + Eg — Ep

released by the system is shown as process 2.
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APPENDIX J

LISTING OF MULTIPHOTON UPCONVERSION CODE
GAMMAP
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aQonn

ZKG

Q00000

GAMMAP MULTIPHOTON UPCONVERSION CODE

DYNAMICS OF T-E FOUR LEVEL SYSTEM
S. N. DIXIT S/6/86 (original version)
B.BALKO 13/11/8¢ (MODIFIED)
IMPLICIT RESL *8(A-H,0-2Z)
DIMENSION XI(100),RMOA(100),RHOC1(100),RHOC2(100),RHOB(100)
DIMENSION An(16,16),X0(16),X(16,10),UXC2(20),UXC2T(20) ,WTERM(20)
COMP_EX *lo ZR(16,16),ZR0O(15,18),ZRIMNV(16,16) ,ZW(16)
Input answe~r variable.
CHARACTER*1 N3

NEQ=l5
NPTS=10

INPUT PARAMETERS
GAMMA, GAMAC,UACl,Vac2,VBCL ,VBC2
WAB ,WACL ,WAC2,WBC1 ,WBC2,WC1C2

IFLG = 0

DO WHILE(IFLG.EQ.O)
GAMAA=4 ,6D-7
GAMAC=4,3D11

T =-5.0-9
VAC1=0.D0
VAC20=2,083D15
VBC1=0.D0
VBC2=DSART (ZAMAC)
WwAB=0 .00
WACl1=-2.42167018
WAC2=~-1.20902015
WBC1=WACl
WBC2=lAC2
WC1C2sBC2-WBC1

XW = 10.0

XINT = 1.D10

XWCA = 100.

XWAB = 1.06

XWAC = - XWCA

XWBC = XWAC - XWAB
XGR = 0.0

INPUT CONSTANTS
XPI = 3.1428

XPLAK = 1.03458870-34
PLANK = DSQRT(1./XPLAK)
XALPA = 1.0/137.03604
YALPA = XALPA/XPLAK
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0O0060 O

OO0

CKG

10

CONVERSIIN FROM EV TO HZ
EV = 2.2.304D14

ATMIC RaDIUS IN CM
XRAC = 1.00-8

NUCLEAR =aADIUS IN CM
XRAC = 1.0-13
XRAC = %3AC*J,.070-1

NEW INPU™

MNFIT = 1)

W = XW*ES

XWP = XN + XWAB

WP = XINPeEV

Save the values.

SGAHMAA = GaMAA

SGAMAC = GAMAC

SVAC20 = VAC20

SWACL = ~AC1

SWAC2 = ~<AC2

FORMAT(AL)

WRITE(6,*) “Input XW value? <(RETURN>=NO, Y=YES’

READ(S,19)ANS

IF((ANS.EQ.“ Y ). OR.(ANS.EQ. "y’ ))THEN
READ(S,% )XW
-END IF

WRITE(6,%) “lnput XINT value? (RETURN>=NQ, Y=YES‘

READ(S,10)ANS :

IF((ANS.EQ."Y’).0R.(ANS.EQ.“y ) )THEN
READ(S,%*)XINT

END [F

WRITE(6,%*) “lnput XWCA value? <(RETURN>=NO, Y=YES’
READ(S,10)ANS

IF((ANS.EQ. Y’),.0OR.(ANS.EQ. "y’ ))THEN
READ( S, %) XWCA

END IF

WRITE(6,%) “Input XGR value? <(RETURN>=NG, Y=YES~’

READ(T,10)ANS

IF((ANS.EQ.”Y").0R.(ANS.EQ. y’))THEN
READ(S,*)XGR

END IF

WRITE(S,%*) “Input T value? (RETURN)>=NQ, Y=aYES’

READ(S,10)ANS
[F((ANS.EQ.“Y’).0R.(ANS.EQ. 'y’ ))THEN
READ(3,»)T

END IF
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(W]

N

n

00 (v}

[y

(9]

[y

30

45

S0

&0

22
65

20

AL = = <helA

WRITE 5,30 (<W XINT,XWAC , XWAB ,MNFOT
FORMAT( - INPUT PARAMETERS :XW,XINT ,XWAC ,XWAB ,MNFOT* /
1 1P4D12.:,1%)

N = MNFOT

M= N2 + 2

W = XWREY = (XGR-MNFOT)*GAMAC
XN = W/EV

WAC = WAC~EY

YAC20 = XPAC%ADSIQRT(2.04XP Ik XALPAXXINT ) *PLANK
WC1C2=WBC2-4BC1
CALCULATION OF VAC2

WRITE(6,45"
FORMAT(1X, YAC20 CALCULATED AS A FUNCTION OF PHOTON NUMBER’)

WTERM(1) = 1.0

DO 50 J=1,M

WTERM(2%J) = (WAC + (2kJ-1)%*W) + GAMAC
WTERM(2%J+1) = (2.%J)%d

UXC2(1l) = vAC20

UXC2T(1) = IXC2(1)

DO 60 [=2,N~1

UXC2(I) = UXC2(I-1)*VAC20/WTERM(I)

UXC2T(I) = UXC2T(I-1) + VUXC2(I)

UXC2(N) = UXC2(N-1)*AC20/ (WTERM(N) + GAMAC)
UXC2T(N) = UXC2T(N=1) + UXC2(N)

00 52 [=1,N
WRITE(6,835) I ,WTERM(I),UXC2(1),UXC2T(I)
FORMAT(1X,!5,1P3015.6)

WRITE(6,*) "ENTER 1 FOR VAC2, 2 FOR VAC2T ~’
READ(S,*) [CHOICE

WRITE(6,%) “ WHICH ONE? -

READ (J,%) IONE

IF (ICHOICE.EQ.1) THEN

VAC20 = UXC2( IONE)

ELSE

VAC20 = UXC2T(IONE)

END IF

FORMAT(/ ,AS)
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0O000 0

MP = [ONE

XWP = XWAT + MP*W/EV
WP = XNP*IV

WAB = 0.0

XWACL = XHAC - XWP
WACL1 = XWAC1*EV
XHWAC2 = XHAC + MP*XW
WAC2 = XeAC2%*EV
XWBCL = XWBC - MPAXW
WBC1 = XWBC1l*EV
XWBC2 = XwBC + XWP
WBC2 = XWBC2*EV
WC1C2 = WaC2 - WBC1

T=5.00-3
TINCA=0.03J

PI=3.141%22700
C=2.99792°5D10
HBAR=1,05459190-27
H=6.6261963D~-27
TOPIC=2 .DO*PI*C

TAsT*TOPIC
TINCA=TINC*TOPIC

WRITE(6,1)
1 FORMAT("1’)
WRITE(6,103)
10S FORMAT(1X, DYNAMICS OF THE FOUR LF 'EL SYSTEM’,
1 /7 INTENSITY VARIATION’//)
WRITE(6,107) GAMAA,GAMAC,VACl ,VAC20,VBC1 ,VBC2
107 FORMAT(’ INPUT PARAMETERS: GAMAA,GAMAC,VACl,vAC2,VBC1,VBCZ /
1 1P6D12.4)
WRITE(6,111) XWAB,XWAC ,XWBC ,XGR ,XWP, I ONE
111 FORMAT(’ INPUT PARAMETERS: XWAB,XWAC,XWBC,XGR,XWP,IONE’/
1 1P3D12.4,14)
WRITE(6,108) WAB,WACL ,WAC2,WBC1 ,WBC2,WCLC2
108 FORMAT(’ INPUT PARAMETERS: WAB,WACL,WACZ2,WBC1 ,WBC2,WC1C2 /
1 1P6Dl12.4)
WRITE(6,109)T,TINCA
109 FORMAT(1X, T,TINCA’, 1P2D16.4)

GAMAA=GAMAA/TOPIC

GAMAC=GAMAC/TOPIC
VAC1aVAC1/TOPRPIC
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OO0

OO00000

VAC20=UaC20/TOPIC
UBC1=VBCL/TOPIC
VBC2=VBC2/TOPIC
WAB=WAB/TOPIC
WACL=ACL/TOPIC
WAC2alAC2/TOPIC
WBC1=WBCL/TOPIC
WBC2=WBC2/TOPIC
WC1C2=WCiC2/TOPIC

INCREMENT VAC2

E0=0.1

AINT=0.1

DO 5000 IDEL=1,NPTS

E2=E0+(IDEL-1)%*AINT

VAC2=VAC20%E2
IF(EQ2.GE.0.01D00) AINT=0.0100

DEFINE THE INTENSITY DEPENDENT QUANTITIES (VAC2,VBC1)
SET UP ~ AND X0

0C 303 IL=1,NEQ

X0(IL)=0.00

DO 303 IM=1,NEQ

AACIL, IM)=0.00
303 CONTINUE

NON-ZERO MATRIX ELEMENTS
X0(1)=1.00

AA(Ll,1)=-GAMAA
AA(Ll,6)=2.00%VAC1
AA(1,8)=2.00%VAC2

AA(2,2)=-GAMAC
AA(2,14)=-2.D0%VBC1

AA(3,1) =GAMAA
AA(3,2)=GAMAC
AA(3,4)=GAMAC
AA(3,14)=2.00%VBC1
AA(3,16)=2.00%VBC2
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AAC S, 4) =-3AMES
AA(4,3)==2.D0wAC2
AA(4,16)==-2.21%UBC2

AA(S,S)=-(GrMa+GAMAC)/2.00
AA(S,6)3-WACL
AA(S,12)=-JACS
AR(S,10)=-UBCI

AR(6,8)=aR(3,3)
AR(6,5)=-RA(S.2)
AA(6,2)=VACL
AA(B,1)=-VACl
AA(6,11)=UAC2
AA(6,9)=-VBCL

AA(7,7)=20A(3,3)
AA(7,8)=-WACZ
AA(7,12)=VACL
AA(?7,10)=-VBC2

AA(8,8)=RA(7,7)
AA(8,7)2-AA(7.3)
APA(8,4)=VAC2
AA(8,1)=-VAC2
AA(B,11)=VACL
AA(8,9)=-VBC2

AA(9,9) 2-GAMA/2.D0
AA(9,10)=WAB
AA(9,14)=VACL
AA(9,16)3VAC2
AA(9,6)=UBCL
AA(I,8)3VBC2

AA(10,10)=-GAMAA/2.00
AA(10,3)=-AA(3,10)
AA(10,13)=-VACL
AA(10,13)=-VAC2
AA(10,S5)=vBC1
AA(10,7)=VBC2

AA(11,11)=-GAMAC
AA(11,12)=HC1C2
AA(11,8)=-VACL
AA(11,16)=-VBC1
AA(11,6)=-VAC2
AA(11,14)=-VUBC2
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0

OO0

S000

AA(12.12)=-3AMAC
M(12,11)=-vC1lC2
MAC12,7)=-aCl
AA(12,15)=-/BC1
2A012,35)=Uel2
=A(12,13)=3C2

NA(13,13)=-3AMAC/2.00
AA(13,14)=-4BC1
AA(13,10)=taCl
S»A(13,12)=-/BC2

AA(14,14)=-3AMAC/2.00
2a(14,13)=W3C1
ea(l14,9)=-\aC1
am(l14,3)=-t 3C1
QA14,2)=UETL
»A(14,11)=03C2

AR LT, 15)=-3MAC/2.00
2A(15,16)Y=-wWBC2
AACLS,10)=UaC2
Ra(15,12)=3C1

APA(16,16)=-3AMAC/2.00
A (16,13)=WBC2
AA(le,9)=-LaC2
AA(16,3)=-1"8C2
AA(16,4)=URC2
AA(16,11)=uBC1

print ¥, ‘idel’,idel

CALL SOLVE(NEQ,1,Aa,X0,ZR,ZR0O,ZRINV,ZW,TA,TINCA,X,1,2,3,49)
STORE THE SOLUTION

XI(CIDEL)=E2

RHOA(IDEL)Y=X(1,1)

RHOC1(IDELY=X(2,1)

RHOC2(IDEL)=X(4,1)

RHOB(IDEL)=X(3,1)

CONT INUE

QUTPUT
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WRITE(6,%4)(XI(IDEL),RHOA( IDEL) ,RHOB(IDEL) ,RHOC1( IDEL)
1 RHOC2(IDEL),IDEL=1,NPTS)
S4 FORMAT(1X,.”75015.86)
S5 FORMAT(1X,1°2D15.6)
WRITE(1,5%)(XI(IDEL),RHOA( IDEL),
1 IDEL=1,NPTS)
WRITE(2,55)(XI(IDEL) ,RHOB(IDEL),
1 IDEL=1l,NPTS)
WRITE(6,%) ANOTHER RUN? Y = YES, N = NO’
READ(S,10)ANS
IF((ANS.ET.°N”).0R.(ANS.EQ. n")) IFLG=1
END DO
STOP
END
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PROGRAM PNP
(NAME LIST AND CODE LISTING)
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APPENDIX K

PROGRAM PNP

NAME LIST

A - Parameter in determining well depth Yukawa Potential

B - Parameter in Yukawa Potential for radial scaling

BC - Parameter in Yukawa Potential for

Y(12) Array for phase space position of the three-particle system

DERY(12) Array for time derivatives of Y(12)

WORK(352) Real *8 Work Array for ODE

IWORK(5) Integer Work Array for ODE

X1, Y1, PX1,PY Positions and Momenta for Neutron in Cartesian Coordinates -
X2, Y2, PX2, PY2 Positions and Momenta for 1 Proton in Cartesian Coordinates

X3, Y3, PX3, PY3 Positions and Momenta for 2nd Proton in Cartesian
Coordinates

Assignment of positions and momentum are as follows:

Y(1) X1 Neutron
Y(2) Y1
Y(3) X2 Proton 1 Cartesian Coordinates
Y(4) Y2
Y5 X3 Proton 2
Y(6) Y3
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o
Y(7) PX1 Neutron
Y(8) PY1 ®
Y(9) PX2 Proton 1 Cartesian Momenta
Y(10) PY2
Y(11) PX3 Proton 2 ®
Y(12) PY3
URANDIY) Random number generator with seed I'Y in range [0,1]
®
DX - Range of X,Y Box for initial coordinates
DP - Range of Px, Py Box for initial momenta
PX - Total X momentum
®
PY - Total Y momentum
ETOT - Subroutine to Compute
Kinetic energy - EK
Potential energy - EpPOT
Total energy - ET

from phase space configuration Y(12)

ODE

FCT

T
TOUT
Relerr
Abserr
IFLAG

Angular Momentum - XL

- O

Name for differential equation solver

i

external function containing set of equations

time variable (current)

target time for ODE

Relative Error *
Absolute Error

Communication Variable

IFLAG = 1 on IstStep ﬁ
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IFLAG = 2 onnormal return
R1 - Distance of Neutron to Proton 1
R2 - Distance of Neutron to Proton 2
R3 - Distance of Proton 1 to Proton 2

FCT Subroutine for set of Hamilton's equations to be solved. The 1st set of 6
equations are for the calculation of particle momenta.

DERY (1) = 2X® _ oH _ oH

I
i
~
o

DERY 2) - DY@ _ _oH oH _ px2

DT = 9Y® ~ 9Y] -

DY@3 oH oH
DERY (&) = 2f « s - X5

PX2

DY(4) oH oH
DERY (4) = ——=— = 3?(1-)-:7?3 = PY2

DT

DERY (5) = %ﬁ=%{6—)=§%= PX3
DY(O)
DT

dH dH

DERY (6) = = éY—B = PY3

|
;:Sl
!

The second set of six equations are for the calculation of particle coordinates.
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DERY(8)=P—§F§2=%%-=‘_8%V;%{L-%%
e B0 B g WA

DERY(10)=%@=‘ag =% .a%l. -§Ri3 gs_j
DERY(M):Q‘%FI—Q:%%:-_B% %% _5’_1‘{’; E?Tl?

o

DERY(12) = DY _ -9H _ -gv 9Rz ~ gv 9R3
= B = Foy - 5% % oR oT

For this set of equations the following code names are used in the computer

program.
DVRI1 = 9V/dR1
DVR2 = 0V/0R2
DVR3 = 9dV/dR3
DR1X1 = oRI1/X1
DR1Y! = dRI1AY1
DR1X2 = oR1/0X2
DRIY2 = oRIQY2
DR2X1 = JR2/0X1
DR2Y1 = OJR2/YI
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DR2X3 = 0R2/9X3

DR2Y3 = JR2/0Y3

DR3X2 = JR3/0X2

DR3Y2 = JR3/0Y2

DR3X3 = JR3/9X3

DR3Y3 = JR3/0Y3

List of parameters used in ETOT, subroutine used to compute energy and angular
momenta.

EKN - Kinetic energy of neutron

EKP1 - Kinetic energy of proton 1
EKP2 - Kinetic energy of proton 2

VR1 - Potential energy of neutron - proton 1
VR2 - Potential energy of neutron - proton 2
VR3 - Potential energy of proton 1 - proton 2
EK - Total kinetic energy

EPOT - Total potential energy

ET - Sum of total kinetic and potential energy

XC - X Cartesian position of center of mass

YC - Y Cartesian position of center of mass

XLl - Angular momentum of neutro: about (Xc, Yc)
XL2 - Angular momentum of proton 1 about (Xc, Yc)
XL3 - Angular momentum of proton 2 about (Xc, Yc)
XL - Total angular momentum
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PNP ELECTRON NUCLEAR COUPLING CODES

IMPLICIT REM *8(A=H,0-2)
COMMUN ZAAA/Z A,3C,BsXMN
REAL%8 Y(12),0ERY(12)
DIMENSION WCRK(352),IW0RK(S)
EXTERNAL FCT

+ *

PROGRAM FOR 2 ,N,P ¢ HE 3)» V2
BY D w NOI?

SEPT 19285

N
k
x
+ * +
PREEX2%k2 kxR EXERASER S XSSP

MOTION CONFINED TO X=--Y SPACE

N X1,711.PX1,PY1 9€1,2)Y,P(7,8)
Pl X2,Y2,PX2,PY2 R€3,4) ,P(9,10)
P2 X3,Y1,PXx3,PY3 0(5,¢6) ,P(11,12)

UNITS

1 TIME UNIT = 2

1 ENEFGY uNIT = | MEV

1 DISTANCE UNIT = 1 FM (10%#=-13CM)

INPUT OFF PARAMETERS
A = 22,700
8 = 0.8580D0
BC = 2.4700
XMN = 1000.700

INPUT INITIAL CONDITIONS
SERAREBEEREEEREEEERXABAR SRR AX KRB ERERK AR

CODE RUNS 100 TRAJECTNRIES
FOR =30 < E < =10 MEYV
AND &4 < L < 10

00 1001 1I=1,100
Iy = 7
DX = 8.000
oP = 100.00°
X1 = 0.000
Yl1 = 0.000
00 1 J=1,10°0
X2 = DX*(URANDCIY)=0.500)
Y2 = DX®(URAND(IY)=0.500)
X3 = DX (URAND(IY)=0,500)
Y3 = DX#(URANDCIY)=0.500)
PX1 = DP#(URANDC(IY) -0,5D0)
PYL = OP*(URANDCILY) -0.500)
PX2 = DP#(URANDC(LY) =0.500)
PY2 = DP*(URANDCLIY) =-0,5D0)
PX3 = =-(PX1 + PX2)
PY3 = =(PY1l + PY2)




MOMENTUM CHECK
PX = PX1 ¢+ PX2 ¢ PX3
PY = PY1l + PY2 + PY3

Y(l) = x1
Y(2) = Y1
Y(3) = X2
Y(4) = Y2
Y(s5) = x3
Y(6) = Y3
Y(?7) = Px1
Y(8) = PY1
Y(9) = PX2
Y(16) = PY?
Y{i1) = Py}
Y(12) = PY3

CALL ETNT(Y,LZC,EPCT,ET,XL)
IF (ET.GVe=30.000.AN0ET.LT.-10.0N0,AND,
$ CASS(XL) eGT,4,000.ANC.DAES(XL).LT,10.0D0) GO TO 2
1 CONTINYE
2 CONTINMNUE
WRITE(H,106) 2X,PY
106 FORMAT(® *,'PxXT,PYT*,2020.10)
WRITc(6,101) X1,Y1,PX1.PY1
wRITL(6,102) X2,Y2,PX2,PY2
WRITE(6,103) 23,Y3,PX3,PY3
101 FURMAT(* *,°111°%,4D20.10)
162 FORMAT(® 9,°222*,4D20.10)
103 FORMAT(* *,*233°,4D20.10)
WRITE(6,104) ETLEKL,EPQT, XL
104 FORMAT(®* *,*CT,EXK,EPQT,LT*,4D20.10)

NPTS = 8000

T = 0.000

ABSERR = 1,00-172
RELERR = 0,000
IFLAG = 1

NOIM = 12

TSTEP = 1.00000

Rl = (Y(L)=Y(2))*%2 + (Y(2)=Y(4))%%2
R2 = (Y(1)=Y(S5))%%2 & (Y(2)-Y(6))%x%?
K3 = (Y(3)=Y(5))%22 + (Y(4)-Y(§))e%x?
R1 = DSQKRT(RL)
H2 = DSWRT(KZ)
3 = DSUKRT(K3)

DO 7 I=1,NPTS
TOUT = TSTEP*DFLOAT(I)

CALL ODECFCT,NDIM,Y,T,TOUT,RELERR,ABSERR,IFLAG/,WORK,IWORK)
CALL ETOT(Y,EXKL,EPOTLET,XL)

Rl = (Y(1)=Y(3))%%2 + (Y(2)-Y(4))%e2
RZ2 = (Y(1)=Y(5))%%2 &+ (Y(2)-Y(&))nsx?
R3 = (Y(3)-Y(5))%%2 &+ (Y(4)-Y(8))%%2
R1 = DSQRT(RL)
R2 = DSQRT(R2)
R3 = DSQRT(RY)
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OUTPUT T PLOTTER Y(1-4)
WRITE (6,1%5) R1,R?,R3,ET, xL.T
105 FORMAT(® e,'x,v°*,6D20.10)
7 CONTINUE
WRITEC6,125) P1l,iK2,R3,ET,°T
1001 CONTINUE
STQP
END

SUBFOUTINE FCT(Xx,Y,DERY)
IMPLICIT SZAL%3(A=H,0~2)
COMMUN JAAA/ A,LHC,B,XMN
REAL®3 Y(_2),DEFY(12)

KL = (Y(1)=Y(3))e%2 + (Y(2)~Y(4))*%x2
R2 = (Y(1)=Y(5))%%2 & (Y(2)~Y(6))I*%2
F3 = (Y(3)=Y(5))4%2 + (Y(4)=Y(&))%x%2
F1 = DSWRT(X1)
h2 = DSQRT(R2)
h3 = DSWRT(~3)

DAFACS |

LUVYR1=  As3(Cx(l,0D0+RRR1IBSDEXP (=HER1)/R1%x%?
LVR2=  Ae3Cx2(L.0C0+R2R2)ISCEXP (=P #R2)I/R2%%?2

LYRT=  Ax3Cx(1,0D0¢B2R3)ISUFEXP (=P2P3)/RI&&D =1, 44007/3%22
OR1/V8
DR1IX1 = (f(l)=-Y(3))I/R1
DR1X2 = (Y(5)=-Y(1))/R1
DR1Y1 = (Y(2)=-Y(4))/R1
DR1Y2 = (Y(4)=Y(2))/R]
DR204
DR2X1 = (Y(1)=Y(S))/R2
DR2X3 = (Y(S)=Y(1))/R2
DR2Y1 = (Y(2)=Y(8))/FR2
DR2Y3 = (Y(%)=Y(2))/R2
DR3DQ
OK3X2 = (Y(3)=Y(S))/R}
OR3X3 = (Y(5)=Y(3))/R3
DR3Y2 = (Y(4)=Y(4)) /K3
DR3Y3 = (Y(56)=Y(4))/R3

P LQUATIONS -

DERY(1) = Y(7)/XMN
DERY(2) = Y(8)/XMN
DERY(3) = Y(7)/7XMN
DERY(4) = Y(10)/XMN
DERY(S) = Y(1l1)/XMN
DERY(6) = Y(12)/XMN

@ EQUATEIONS
DERY(?7) = ~DVRL1&«UR1X1 = DVR2#DR2X1
DERY(8) = =DVIR1*URLY1 = DVRZ«DR2Y1

DERY(9) = ~DVP1#DRLIX2 - DVRIXDR3IX2

DERY(10) = =DVRI#NDR1IYZ - DVK3I*DR3Y2
DERY(11) = =DVR2*DR2X3 - DVR3I*CR3IX}
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CERY(12) = ~)vR2#DR2Y3 ~ DVRZI*DRIY3
HE TURN
LND

SUBROUTINE STITC(YL,EK,FPOT,ET,XL)
IMPLICLY FIAL®3(A~H,0=2)

COMMUN /AMA/ A HC3,XMN

hEAL®3 Y(12)

KINETIC EFRGY

ERN = 0.50)s(Y(7)%x2 + Y(3)8e2)/XMN
EKP1= 0.509%(Y(2)%%2 + Y(12)%%2)/XMN
LKP2 = 0.500%(Y(11)%%2 + Y(12)*%2)/XMN

POTENTIAL -“ERGY

Kl = (Y(1)=Y(3))&%x2 + (Y(2)-Y(4))s¥2
he = (YC(L)=Y(5))2%2 & (Y(2)=-Y(£))*x?
W3 = (Y(3)=7(S5))&x%2 + (Y(4)=Y(&))s®?
K1 = DSWKT(~NL)

ke = DSukT(NZ)

k3 = DSWkT(23)

VRl = =A%3C2DEXP(=S2R1)/R1

VR = =A®4C=DEXP(=R%F2)/R2

VR3 = «AXACRDEXP(=B3¢K3) /7R3 +1,44D0/R3

TOTAL ENE%SY

EK = EKN + EKP1 + EKP?2
EPOT = Vhl # VR2 + VR3
ET = EXK + P01

ANGULAR "IMENMTUM
XC = Y(1) + Y(35) + Y(5)
YC = Y(2) + Y(u) ¢ Y(6)
LL = X2PY < Y#PX
XLl = CY(l) = xCI*Y(3) =~ (Y(2) ~ YC)*Y(7)
XL2 = (Y(3) = XCI#Y(10) ~ (v(4) = YO)=Y¥(M)

xL3 (Y(S) = xCr*Y(12) = (Y(&6)~ YCI*Y(11)
XL = XL1 # xL2 + XL3

XL = XL/197.3D0

RETURN

eND
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NP2 ELECTRON NUCLEAR COUPLING CODE

IMPLICIT REAL®3(A=H,0-2)
COMMON ZAAAZ AL,RC,B/XMN
REAL*8 Y(18),DERY(168)
DIMENSION #URK(436),IW0RK(S)
EXTERNAL FCT

* *
PROGRAM FOR P ,N,P N (HE &) V2
8Y O w NOID
OCTOBER 1935
N
*
-
* = .

Presxasssks et rtdsssdpP
]
R
N

MOTIUN CONFINED TG X=-Y SPACE

N1 X1,Y1.,PX1,PY} 9¢1,2),P(5,10)
P1L  X2,Y2,PX2,PY2 9C¢3,4),PC11,12)
P2 x3,Y3.,Px3,PY3 8¢S,4),PC13,14)
N2 X&,¥6,PX&,PY6 8¢7,8),P(15,16)

R1 NisP}l

K2 N1%P2

R3 P1eP2

Ré N1®N2

RS N2sPl

RS N2#P2
UNITS

1 TIME UNIT = 2
1 ENERGY UNIT = 1 MEV
1 DISTANCE UNIT = 1 FM (10%2=13CM)

INPUT QFF PARAMETERS

A= 22,700
B = 0.85800
8C = 2.,4700
XMN = 1000.000

INPUT [NITIAL CONDITIGNS
AERPREEERRBEEAREASERIVEINERRINRISIRRRAREL

Iy = 7

Ox = 8.000

OP = 18.000

X1 = 0.000

Y1 = 0,000

V0 1 J=1,1000

X2 = DXe(URAND(1Y)=0,500)
Y2 = DX#(URAND(I1Y)=0.500)
X2 = 2,000

Y2 = 0.000

X3 = DX®«(URANDCIY)=0.500)
Y3 = DX®(URANDC(IY)=0.500)




s

x3
Y3
¥é
Yé
} )
Y&

PX1
PY1
PX1
PY1
PX2
PY2
pX2
PY2
PX3
PY3
PX3
PY3
PX4
PY&4

O I T VI I T T T I T U )

M

PX 32 PX1 & PX2 ¢ PX3 + FX4
Y = PY1l + PY2 ¢ PY3 ¢ FY&4

P

Y<1)
Y(2)
Y3
Y(4)
Y¥<S)
Y(4)
Y(7)
Y(8)
Y(9)
Y(10)
Y(11)
Y(12)
Y13
Y(14)
Y{(15)
Y(16)

3.000
'Z.ODO

OXs (URANDC1IY)=0,500)
DX& (URANDC[Y)=0,500)

2.000
-2.000

PP (UPAND(]IY)
DPEC(URAND (1Y)
¢.000
-2.000
DP=(URANDCIY)
OP®C(URANDCIY)
=2.000
0.000
OP= (URAND(IY)
DP*(URANDCIY)
2-000
0.000
-(PX1 + PX2 ¢+
-(PY1 ¢ PY2 »

OMENTUM CHECK

X1
Y1
X2
Y2
X3
Y3
Xé
Y&
PxL
PY1
X2
PY2
PX3
PY3
PXé&
PY4

-OOSDO)
-0.500)

‘0.500)
-0.500)

«0.500)

PX3)
PYY)

CALL ETOT(Y.EK,EPOTL,ET,XL)

IF (ET.GVu=30.000.,ANDET.LT.~10,000.AND.
DABSCXL) cGTo4.000.ANC.DARSCXL) LT .20.0P0) GO TO

1 CONTINUE
2 CONTINUE

106

101
102
103
104

WRITE
FORM

FORMA
FORMA
FORMA
FORMA

(6,106) PX,PY

ATC*  *,'PXT,PYT*,2020,.,10)
WRITE(S5,101) X1.Y1,PX1,PY1
WRITE(6,102) X2.Y2,PX2,PY2
WRITE(6,103) X3,Y3,P23,PY3
WRITE(6,104) X&4,Y6,PXA,PY4
TC*  *,°111°,4020.10)
TCe *¢,0222',4020.10)
TC* 9,0333°¢,4020.10)
TC* *,%%44°,4D20,10)
WRITEC6,105) ET,EK,EPOT, XL

L4

2

- A



105 FORMAT(® *,°*ET,EK,EPOT,LT*,4D20.10)

NPTS = 8000

T = 0,000

ABSERR = 1.00-12
RELERR = 0,000
IFLAG = 1

NDIM = 16

TSTEP = 1.00000

R = (Y(1)=Y(3))#32 + (Y(2)=Y(4))e®2
R2 = (Y(1)=Y(5))a%2 + (Y(2)-Y(6))*n2
R3 = (Y(3)=Y(S5))#%2 + (Y(4)-Y(4))se?
R4 = (Y(7)=Y(1))#32 + (Y(8)=Y(2))n#2
RS = (Y(7)=Y(3))**2 + (Y(8)~Y(4))»*x2
6 = (Y(7)=Y(5))a%2 & (Y(8)~Y(§))I*x2
Rl = DSERT(R}}

R2 = DSART(R2)

R3 = DSART(R3)

k4 = DSQHT(RG) |

RS = DSART(RS)

R6 = DSART(RS)

00 7 I[=1,NPTS
TOUT = TSTEP*DFLOAT(I)

CALL ODECFCT,NDIM,Y,T,TQUT,RELERR,ABSERP , [FLAG, WORK, [¥CRK)
CALL ETOT(Y,EK,EPOT,ET,XL)

CY(L)=Y(3) %2

Rl = * (YC2)-Y(4) )2
R2 = (YCL)=Y(S5))se2 + (YC2)=Y(6) Ie%2
R3 = (Y(3)=Y(S5))s%2 + CY(L)~Y(6))x22
R = (Y(7)=Y(Ll))en2 ¢ (YC8)=Y(2))xs?
RS = (Y(7)=Y(3))e»2 =+ CY(8)~Y(4))ne?
R6 = (Y(T7)=Y(5))*%2 + (Y(3)~Y(8))ee2
R1 = DSQRT(R1)
R2 = DSART(KHZ)
£3 = DSERT(RY)
Ré& = DSART(RS)
RS = DSWURT(RS)
6 = OSQRT(REG)

WRITE(6,107) R1,R2,R3,R4,ET o XL,T
107 FORMAT(?® v ,eX,Y?,4014.5,2020.10,012.4)
7 CONTINUE

STQP
END

SUBROUTINE FCT(X,Y»0ERY)

IMPLICIT REAL*8 (A=H,0-0) .
COMMON /AAAZ A,BC,B,XMN

REAL*8 Y(16),DERY(16)

Rl = (YC(1)=Y(3))#e2 & (Y(2)-Y(4))**2
R2 = (Y(1)=Y(S5))#e2 ¢ (Y(2)=Y(6))#*2
R = (Y(3)=Y(S5))ex2 & (Y(&)-Y(6))x»2




[a¥aNal

aXal

la¥alal

[aXa)

Ré = (Y(7)=Y(1))ax2 & (Y(8)~-Y(2))%*?
RS = (Y(7)=Y(3))ax2 & (Y(S)=Y(4))2%2
Re = (Y(7)=Y(S))e82 + (Y(R)=Y(§))%s2
Rl = DSuRT(NL)
K2 = DSakT(W2)
R3 = DSQRT(R3)
R4 = DSURT(RS)
RS = DSQRT(RS)
Re = DSART(KG)

ovs9l
UVR1= AsHC*(]1.000+93R1)*DEXP (~-B*R1)I/R1%%?
DVR2= ASRC®(1.0D0+0#R2)*DEXP (~B*R2)/R2%x?
DVR3= A$3C*(1.,000+B3K3)*DEXP (~B#R3)/RI*%2
DVR4=z AsRCa(1.000+B8R4)SDEXP (~B*RLI/RG*%2
LVRS= AsHC#(1.000+R%RSIS0DEAP (~BERS5)/RS*%2
DVRé= ASHCH(1.0D0+82RE)#DEXP (~R#R6)I/RE®K2
Lk1/US

DR1xl = (Y(L)=Y(3))/R]

DR1X2 = (Y(3)=Y(1))/R1

DRIYY = (Y(2)=Y(4))/R]

LDR1Y2 = (Y(&)=Y(2))/R1

DR20W

DR2X1 = (Y(1)=Y(S))/K2

DR2X3 = (Y(S)=Y(1))I/R2

DR2Y1 = (Y(2)=Y(6))/R2

DR2Y3 = (Y(6V=Y(2))/R2

DR30Q

DR3X2 = (Y(5)=Y(S))/R3

DR3X3 = (Y(S5)=Y(3))/R3

DR3Y2 = (Y(4)=Y(6))/R3

DR3Y3 = (Y(6)=Y(&))/R3
DR&/DS

OR&X1 = (Y(1)~-Y(7))/R4

DR&X4 = (Y(7)=Y(1)) /R4

DR&4Y1 = (Y(2)=Y(8)) /P4

DR&4Y4& = (Y(3)=Y(2)) /R4

DRSLA

DRSX2 = (Y(3)=Y(7))/RS

DRSX6 = (Y(7?)=Y(3))/RS

DRSY2 = (Y(4)=Y(B))/KS

DRSY& = (Y(3)~Y(4))/RS5

DR6DN

DR6AI = (Y(S)~-Y(T7))/RE

DR&6X& 3 (Y(7)~=Y(S))/R6 *

DROYI = (Y(5)~Y(R))I/PS

DROYL = (Y(B)~Y(8))/RA

P EQUATIONS

DERY(
DERY(

1) = Y(9)/XMN
2) = Y(10)/XMN

«1.6400/R3%22




DERY(3) = Y(l1)/XMN
DERY(4) = Y(12)/XMN
DERY(5) = Y(13)/XMN
DERY(6) = Y(14)/XMN
CERY(?) = Y{(1l5)/XMN
GERY(Z) = Y(Ll6)/XMN

¥ EQUATINONS

DERY(9) = ~-DVR1xDR1IX1 - DVR2=0DR2X1 = DVR&*DR&X]
DERY(10) = =-DVYR1#DR1Y1 - DVR2#DRZ2Y1l = DVR4xNR4YL
CERY(11l) = =)DVR1IaDRLIA? = DVYRI*DR3IX2 = DVRSHORSX?
DERY(1Z) = =)VRI2RNDR1Y2 -~ DVR3I*DRIY2 = DVRS=DRSY2
DERY(13) = «DVN2#DR2X3 = DVHR3I%CRIX3 - DVR62NROEXI
DERY(146) = -PVR22DR2Y3I =~ DVRI®CR3IY3I - DVRA&sSDROYS
UDERY(15) = = DVR4SURGX4 = DVRS#DRSX4 - DVRO#DRGXA
DERY(16) = = DVHG*DR4LY4 -~ DVYRS#DRSYSL = DVRe*DROEYS
FETURN

END

SUBROUTINF ETOT(Y,EXK,EPQTLET,XL)
IMPLICIT REAL®3(A=H,0=2)

COMMUYN /AAAZ A,5C,BoXMN

KEAL®R Y(16)

KINETIC ENFRGY
EXNL = 0.500&(Y(9)®%2 + Y(1C)®22)/XMN
EXPl= 0.500%(Y(11)%%2 + Y(12)$22)/XMN
EXP2 0.500%(Y(13)%82 & Y(14)#%2)/XMN
EKNZ2 = 0.500%(Y(15)e%2 + Y(16)9%2)/XMN

POTENTIAL ENERGY

R1 = (Y(1)=Y(3))%%2 + (Y(2)=Y(4))es?
R2 = (Y(1)=Y(S))Is®2 &+ (Y(2)=Y(6))%%?
RI = (Y(3)=Y(S5))%xe2 ¢+ (Y(&)~=Y(6))ex?
R4 = (Y(7)=Y(1))%%2 ¢ (Y(3)=Y(2))ex?
RS = (Y(7)=Y(3))ex2 & (Y(8)-Y(4))%n=x?
R6 = (Y(7)=Y(S))ex2 & (Y(3)-Y(8))%s?
Pl = DS@RT(RL)

K2 = DSHRT(n2)

R3 = DSQRT(IRZ)

R& = DSART(R&G)

RS = DS@RT(RS)

K6 = DSART(FS)

VR = =A®4C®DEXP (=38R1)/R1

YRZ2 = =A#3CENEXP(=-B%K2)/R2

VRI = <A®gCeDEXP(-BeR3)I/R3 +1,44D0/R3
VR4 = =AsBCEDEXP(=-A$R4) /RS

VRS = <Asd(sDEXP(=-A&RS5) /RS ~.
VRSO = <~=AsHC*DEXP(~H®FE)/RE

TOTAL ENEPOQY

EK = EKN1 + EKP1 + FKP2 + FKN2
tPOT = VR1 + VRZ2 ¢+ VRI + VA4 + VRS + VR4
ET = ERK + EPOT

ANGULAR MOMENTUM
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xC
Yc

L
L1
xL2
L3
XLé
XL
XL

RET
ENO

= Y(1) ¢ Y(3) + Y(S) +
z Y(2) + Y(4) ¢+ Y(6)

+

z ASFY = Y&PX
(Y(1) = XC)*»Y(10) =~
(YC2) = XC)sY(12) =
(Y(S) = xC)sY¥(l4) =
(Y(?) = XCr=aY¥(le) -
= XLl ¢+ XL2 + XL3 + xL4
= XL/7197.51v0

URN

Y(7)
Y(R)

(Y(2) = YC)=*Y(9)
(Y(4) = YO)=Y(11)
LY(6)=- YOI=Y(13)
(Y(8)= YC)sY(15)
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PROGRAM NEC

(NAME LIST AND CODE LISTING)

R Value of Turning Point for Proton
Proton Angular Momentum

r Value of Outer Turning Point for Electron
Electron Angular Momentum

Mass of Proton in MEV

Well Depth Wood-Saxons Potential

Radial Scale Parameter

For Wood-Saxons Potential

Nuclear Charge

Mass of Electron in MEV

Coupling Parameter

S =0 - NocCoupling

S =1 Coupled System

Y1) - X Cartesian Coordinate of P+
Y(2) - Y Cartesian Coordinate of P+
Y(3) - X Momenta of P+ PXN

Y4 - Y Momenta of P+ PYN

Y(5) - X Cartesian Coordinate of e
Y(®) - Y Cartesian Coordinate of e
Y(7) - X Momenta of e- PXe

Y(@8) - Y Momenta of e~ PY,
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XK
DPX
DPY
DPNX
DPEX
DPT

ABSERR
RELERR
IFLAG

NPTS -

TSTRP -
TOUT -

EKG -
KET -

AVEP -
CORR4 -
TSP -

- Nuclear Charge in MEV FM Units

- e - P+ XDipole Cartesian Component
- e - P+ Y Dipole Cartesian Component
P+ - X Cartesian Coordinate

e~ - X Cartesian Coordinate
- e - Proton- Coupling Term
1.44 1.44

'\/(Y(l) - Y(sy + (YO - Y(6) )2 Te- P+

Error Parameters for ODE

Relative Error

Control Parameter for ODE

Number of Equations

Number of Time Steps to be Propagated

Time Variable

Integration Time Step Output in Increments of TSTEP
Output Time

Total Potential Energy

Total Kinetic Energy

Total Energy H

Current Value of DPT

Largest Value of DPT

Subroutine to Fourier Analyze Correlation Functions
Subroutine to Subtract Spectra

Function Subroutine to Compute Potential Energy
Radius of P+ from Origin

Radius of e- from Origin
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FCT

CORR4
DP
FFTSC
WA

- P+ -e Distance

- Coulomb Potential for E-

- Nuclear Potential Energy

- Nucleon - Electron - Potential Energy

- Subroutine Containing Differential Equations to be Solved (Hamilton's

equations)

DY(1 .
DERY(1) = —-D,-I(,—)- = oH = X Nucleon equation

DY(2)

DERY(2) = Oor =

N Nucleon equation

DY(3)
o =

DERY(3) = PX Nucleon equation

DY(4)

DERY(4) o7

PX, Nucleon equation

ol X
JH
9Py
-dH
XN
-oH
JYN
)

DYS)
DI = "oX

DERY(6) = —I%r@ = ‘5%% = PY, Electron equation

DERY(5)

|
5¢
o

Electron equation

o

DERY(7) = -D—;%Z)— = g—% = PX.  Electron equation

DERY®) - X&) - g% - Py, Electron equation

Subroutine to Fourier Transform Various Dipole Operators

- Array of Dipole Operators

Sin/Cos Transform Subroutine in IMSL

- Amplitude Function of Sin Transform

- Amplitude Function of Cos Transform
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TP - Signal Observation Time
FREQ - Frequency Increment in MEV
Subroutine TSP - Subtracts Various Spectral Components




NEC ELECTRON NUCLEAR COUPLING CODE

C «TYPE NFC
IMPLICIT REAL%8(A-H,0-2)
COrMON ZAAAZXMNLYO,NN,AN
CCMMON /3887 XME,XK.,S
DIMENSION WORXK(268),IWORK(S)
EXTERNAL FCT
REAL*8 Y(8),DERY(3)

FTO0GRAM FOR ELECTRON~FRCTCN COUPLING
IN HEAVY NUCLEII

wRITTEN B8Y D, W, NCID
DECEMHFR 1985
(JAN 6,1984)

EX2LREERBERAXRSRREEERERRASREEERUARRAERRA KK
UNITS
ENERGY MEY
TIME 1/3%10%%=-23
DISTANCE FM  10#%-13

FEXBIXLRERARARRRRARRNEARN AR R KRR R RKREXRERR R RS
INPUT OF DATA

el alaNaN ol oW a N el o N o W a N N o N e W W a N o W a ¥ a Nala)

l = 33 XLE = 1/2 RG = 1188
l = 51 XLE = 172 RG = 1936
L =29 XLE = 172 RG = 3400
XNTO = 9,410
XLN = 3,000
XETO0 = 1183.0D0
XLE = 0.500 .
C
CHAESEEBEERERRE AR EAIRRARRAAENERRS IR KSR SRR KL KR
C INPUT OF PARAMETERS
XMN = 933,000
v0 = =50.900
RN = 7,400
AN = 0.65D00
1 = 83.000
XME = 0.,51100
C
CEEXSRREEELIRAARERREEREIRABRIERR ARSI R R RRRR KKK
C OLTPUT QF RESULTS
C UN COUPLED CCUPLEL OPERATOR
C IN oyt IN ouyrv < 0P Y/FTLOPD>
C 10 11 15 16 XN = XE
C 20 21 25 26 YN - YE
C 30 31 3S 36 XN
C &0 41 45 LY. XE
C S0 51 55 $é 1.44/REP
C 17 18 XeY TRAJECTOQRY
C
CRESRSEARP AR SRR AR AR R RARR SR RARER IS RERERRERRERN AR
C
C NUCLEON PART
C
C Y1) = X
C Y(2) = ¥
C Y(3) = PX




C Y(4) = PY

DC 1 I1JK=1,2
C SET S TO 1 FOR £~P CQUPLE
S = DFLOAT(IJUK =~ 1)

C
Y(1) = XNTO
¥(2) = 0.000
Y(3) = 0.000
Y(4) = 197.31D0*XLN/Y(1)
C
C ELECTRON PART
C
C Y(5) = X
C Y(6) = Y
C Y7y = PX
C Y¢3) = PY
C
L =1-5
C
XK = l*1.440D0
Y(S) = XETO
Y(6) = 0,000
Y(7) = 0.000
Y(8) = 197.,31D0%XLE/Y(5)
C
C
C FIRST POINT
CEERERRERAEEREERRERERARKARRKA S XX R SRR SRR RARA2EP 15700
C INPUT DIPULE MOMENTS
C

OPX = Y(1) =~ Y(5)
f1 = 10 + S5*(1JK~-1)
WRITE(I1) 0PX

C
OPY = Y(2) =~ Y(4)
12 = 20 ¢ S*([JK=-1)
WRITE(12) OPY
C
DPNX = Y(1)
I3 = 30 ¢ 5%C(1JK=1)
WRITE(LI3) DPNX
C
DPEX = Y(5)
164 = 40 + Sx(1JK=-1)
WRITE(I4) DPEX
C
DPT = 1.44D0/DSORT(DPXs%2 ¢+ DPY*#2)
IS = 50 ¢ S*([JK-1)
WRITECIS5) DPT
C
C LOOP
CREEERIER LR AL REREBRRE AR SRR RRERBRIARRRDERER RS
C INPUT OF INT DATA
C

ABSERR = 1,00-12
RELERR = 0,000
IFLAG = 1

NODIM = 8

NPTS = 8192




II*IIIlllllllllllllllIl.IIII-llllllIIIIIIIlIllIIll-l.lllIlIII--IIllllllllllIlIIlIlllIIIIIIIIIIIIIIIIIIIIIIII‘

o
T = ,.000
ISTEP= 25,000
® AVEP = 0.0D0
IT = 16 + [JUK
C
DO 7 I=1,NPTS
TOUT = T + TSTEP
457 CONTINUE
C
® CALL OOECFCT,NDIM, Y, T, TOUT,RELERR,ARSERR,IFLAG,WORK,[WCRK)
C
WRITECIT) YCL),Y(2)Y(S5),Y(E)
IF (TONE.TOUT) GO TO 457
EPCT = POT(Y(1),Y(2),Y(S),Y(6))
EK = 0.5D0%(Y(3)%%2 + Y(4)8%2) /XMN
s * G.500%(Y(7)%%2 + Y(8)%%2)/XME
ET = EXK + FPOT
o C
CEEESEXXBEXEREREXEAER KR RS SR SRR SR RBRARRER K
C INPUT DIPULE MOMENTS
C
DPX = Y(1) = Y(S)
WHITES (1) DOPx
C
@ DPY = Y(2) = Y(4)
WRITECLI2) OPY
C
OPNX = Y(1)
WRITECI3) OPNX
C
OPEX = Y(5)
WRITE (14) DPEX
o C
DPT = 1,44D0/0SQART(DPX*22 + DPY#22)
WRITECIS) oPT
CERERRREREREEREREERL R R R KRR AR PRSI R KSR AR RRE R
C
CVEP = DPT
IF (CVEP.GT,AVFP) AVEP = CVEP
) IF (10=(1/10) ,NE.I) GQ TO ?
C WRITE(6,498) Y(1),Y(2),ET,Y(S5),YC4),T
498 FOQRMAT(® *L'A*,6020.10) -
7 CONTINUE
388 CONTINUE
999 CONTIANUE
WRITE(6,598) AVEP
598 FORMAT(? *,*MAX E=P COUPLING =',020.10)
@ 1 CONTINUE
C
D0 46 JK=1,5
IN = 10%JK
IOUT = IN + 1
C
CALL CORR&G(TSTEP,NPTS,IN,IQLT)
¢ C
IN = [N + 5§
I0UT = [OUT + S
C
CALL CORR4L(TSTEP,NPTS,IN,IOQLT)
C
®
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46 CONTINUE

C
CALL TSP(MNPTS)
C
STQP
eND
C
C

FUNCTION POT(XN,YN,XE,YE)
CRPEEEEERE LU ERARXRAREAXKAB KB P SRR ST RI AR RXAKBXESRKERKKURE
C POTENT{AL FUNCTION FOR NUCLEON-ELECTRGN MODEL
CEARR 2R RRATLEXEEXFERALRRESERREKRIEREE SRR RER KR KK REFRRTEAR

IMPLICIT FEAL*8(A-H,0-2)

CCMMGN JAAA/XMN,VO,RN,AN

COMMCN /8BBB/ XME,XK,S

C
RP = DSQRT(XN&x2 + YN%%2)
FE = CSURT(XE*%2 + YE*#2)
FEP = DSART((XN=-XF)%%22 ¢+ (YN=-YE)*%2)
VE = =xKk/RE
YN = Y¥0/(1.000 + OEXP((RP=RN )/AN))
VEP = =1,44D0/REP
FOT = VYN + VE + SaVFP
C
RETURN
END
C
C

SUBRQUTINE FCT(X,Y,DERY)
CHEEBXXTRRESAXX S XX RERXBRAEIRPERRE IR AP R R ARARRERRR KRR R AR SXRR
C HAMILTON{AN EQUATION®S FOR NUCLEON-ELECTRON MODEL
CHEEAEREFITSAERRAIER R R ERRE
EEXABRERRERERE K AXRRRAAERRATR R4S

IMPLICIT REAL*8(A=H,0-1)

COMMON /AAA/XMN,VO0,RN,AN

COMMON /8BB3/ XME,XK,S

REAL*8 Y(8),DERY(R)

RP = DSRRT(Y(1)*%2 + Y(2)%22)

RE = CSART(Y(5)%%2 + Y(6)#22)

REP = DSARTC(Y(1)=Y(5))%#2 + (Y(2)=Y(6))*%2)
FRP = DEXP((RP=RN)/AN)

OVRP = =(VQ/AN)SFRP/(1,0D0+FRP)x»?2

C NUCLEON EQUATIONS
OERY(1) Y(3)7XMN
VERY(2) Y(4) 7 XMN
DERY(3) =DVRPEY(1)/RP
b 3 - S#%1.4400%(Y(1)=Y(5))/REP*33
DERY(4) = =~DVRP%Y(2)/RP
$ = S#1.4460D0%(Y(2)=Y(6))/REP 3

C ELECTRON ERUATIONS
DERY(5) Y(7)7XME
DERY(6) Y{(3)/XMF
DERY(?) =XK®€Y(5)/RE*+3
s - S5%1,4400%(Y(S)=Y(1))/REP 83
DERY(8) = =-XK#Y(6)/RE**]
3 = S#1.4400%CY(6)-Y(2))/REP*83
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C
C

FETURN
[ W]

SUBFUUTINE CURPRLGITSTEP,N,IN,TOLT)

CHRREB XSRS EIX TR RS URSTARAEXISRABIR KB RAEERKAERTARSAKR B ARARE

C

SPE

CTRA GENERATION FRUM CORRFLATION FUNCTIONS
S R R e A R P e et e e T s Py

(o)

a¥a¥a¥al

a¥aXa)

[laNal

a8

12

IMPLICIT REAL®2X(A~H,0=1)

DIMENSICN D2(16384)

COMPLEA®L16 CWK(R193)

DIMENSION [wK(99),WA(R193),uR(2193)
VATA Te0P1/4,74318530717958¢D0/

FEwINC IN

LO I I=1,4

READ CIN) UOCIL)

CONTINGF

WhITE(5,89) )

FORMAT(Y ¢, *FREQUENCIES )

CALL FFTSC(”proHA'UBOIUK:UKvCHK)
NN = N/2 + 1

PLOT THE TRANFORM
SET THE /ZEPU FREWUENCY TERM

WA(1l) = 0.QN0Q
WAM 3.000
whM J.0N0

CALCULATSC FREWUENCY

TP = DFLCAT(N=1)=TSIEP
FREGQ 1.009/77P
FRER FREQ%197.3100

CO 12 I=1,NN
FAA= DFLOAT([=1)*FREQ
FESCALE FUR POSITIVE WA
SwA = =A(D)
WACD) = USQRT(SWA®%2 + WP ([)*%2)/DFLOAT(NN)
WRITECIOUT) wACI).WRCI),FAA
CONTINUE

RETURN
END
SUBPOUTINF TSP(NPTS)
IMPLICIT REAL®8(A=H,0-2)
REWIND 16

FEWIND 26
KEWIND 36
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100

REWINE 46
FEWINE 56
FEwINT 11
FEWIND 21
FEWINC 31
REWING 41
FEWINEG 51

NN = 4PTS

Lo 1 1=1,
FEADR(CI6)
REACC(26)
READ(29)
rEADCGLS)
REAQCSO)
KEADCLL)
FEADCSL)
READC3L)
READCLYL)
READ(SL)

LAl
DAZ
A3
LAG
DAS

YAL
YAZ
YA3
YAL
YAS

WwRITE (6.1
FORMAT(?
CONTINUE

RETURN
END

/2

LY
XAl,Xt31,4Wl
XA2,XB2,%W2
XA3,X33,uW3
(AL, X4, W4
XAS,XBS,WS
YAL,YUB1l,F1l
YA2,Y32,F2
YA3L,YB3,F3
YAGL,YDd4,F4
YAS,YRS,LFS

- XAl
XA2
XA3
XA4L
KAS

00) XAl,YAL,XA2,YA2,DAL,W]
*,6D20.10)
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